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Linear equation systems appear in the course of solving a number of applied problems, which are described 

by differential or integral equations or by systems of non-linear (transcendent) equations. They may appear also 
in the problems of mathematical programming, statistic data processing, function approximation, or in 
discretization of boundary differential problems by methods of finite differences or of finite elements, etc.  

This lab discusses one of the direct methods of solving linear equation systems, i.e. the Gauss method and 
its parallel generalization. 

 Lab Objective 

The objective of this lab is to develop a parallel program for solving the linear equation systems by means 
of the Gauss method. The lab assignments include: 

• Exercise 1 – Stating the problem of solving the linear equation systems.  
• Exercise 2 – Studying the Gauss algorithm for solving the linear equation systems.  
• Exercise 3 – The Realization of the Sequential Gauss Algorithm. 



• Exercise 4 – Developing the parallel Gauss algorithm. 
• Exercise 5 – Coding the parallel program for solving the linear equation systems. 
Estimated time to complete this lab: 90 minutes. 
The lab students are assumed to be familiar with the related sections of the training material: Section 4 

“Parallel programming with MPI”, Section 6 “Principles of parallel method development” and Section 9 
“Parallel methods of solving the linear equation systems” of the training material. Besides, the following labs are 
assumed to have been done: the preliminary lab “Parallel programming with MPI”, Lab 1 “Parallel algorithms of 
matrix-vector multiplication” and Lab 2 “Parallel algorithms of matrix multiplication”.  

 Exercise 1 – State the Problem of Solving the Linear Equation Systems 

Linear equat ion  with n independent unknowns x0, x1, …, xn-1 may be described by means of the 
expression 
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where values a0, a1, …, an-1 and b are constant. 
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is termed a system of linear equations or a linear system. In brief (matrix) form this system may be presented as  
bAx = ,  

where A=(ai,j) is a real matrix of size n×n, and vectors b and x are composed of n elements. 
The problem of solving a system of linear equation for the given matrix A and the vector b is considered to 

be the problem of searching the value of unknown vector x whereby all the system equations hold.  

 Exercise 2 - Studying the Gauss Algorithm for Solving the Linear Equation 
Systems  

The Gauss method is a well-known direct algorithm of solving systems of linear equations, the coefficient 
matrices of which are dense. If a system of linear equations is nondegenerate, then the Gauss method guarantees 
solving the problem with the error determined by the accuracy of computations. The main concept of the method 
is a modification of matrix A by means of equivalent transformations (which do not change the solution of 
system (3.2)) to a triangle form. After that the values of the desired unknown variables may be obtained directly 
in an explicit form.  

The Exercise gives the general description of the Gauss method, which is sufficient for its initial 
understanding and which allows to consider possible methods of parallel computations in solving the linear 
equation systems.  

The Gauss method is based on the possibility to carry out the transformation of linear equations, which do 
not change the solution of the system under consideration (such transformations are referred to as equivalent). 
They include the following transformations:  

• the multiplication of any equation by a nonzero constant, 
• the permutation of equations, 
• the addition of any system equation to other equation. 
The Gauss method includes sequential execution of two stages. At the first stage (the Gaussian elimination 

stage) the initial system of linear equations is reduced to the upper triangle form with the use of sequential 
elimination of unknowns.  

cxU = ,  

where the coefficient matrix of the obtained system  looks as follows: 
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At the back substitution (the second stage of the algorithm) the values of unknown variables are determined. The 
value of the variable xn - 1  may be calculated from the last equation of the transformed system. After that it 
becomes possible to find the value of the variable xn - 2  from the second to last equation etc. 

 Gaussian Elimination 

The Gaussian elimination consists in sequential elimination of the unknowns in the equations of the linear 
equation system being solved. At iteration i ,  0≤  i<n-1,  of the method the variable  x i  is eliminated for all the 
equations with numbers k  greater than i  (i.e. i< k≤n-1,). In order to do so the row i  multiplied by the constant 
(a /ak i i i) is subtracted from these equations so that the resulting coefficient of unknown x i  in the rows appears 
zero. All the necessary computations may be described by the following expressions: 
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(it should be noted that similar computations are performed over the vector b too). 
Let us demonstrate the Gaussian elimination using the following system of linear equations as an example: 
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At the first iteration the unknown x0  is eliminated in the second and the third rows. For this the first row 
multiplied correspondingly by 2 and by 1 is subtracted from these rows. After these transformations the system 
looks as follows: 
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As a result, we need to perform the last iteration and eliminate the unknown x1  in the third equation. For this it is 
sufficient to subtract the second row. In the final form the system looks as follows: 
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Figure 3.1 shows the general scheme of the state of data at i-th iteration of the Gaussian elimination. All the 
coefficients of the unknowns, which are located lower than the main diagonal and to the left of column i are 
already zero. At i-th iteration of the Gaussian elimination the coefficients of column i located lower than the 
main diagonal are set to zero. It is done by means of subtracting the row i multiplied by the adequate nonzero 
constant. After accomplishment of (n-1) of such iterations the matrix, which defines the system of linear 
equations is transformed in the upper triangle form. 

The coefficients already 
set to 0 

The coefficient which will 
not change  

The leading row 

The coefficients, which will 
change  

 
 

Figure 3.1. The Iteration of the Gaussian elimination 
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During the execution of the Gaussian elimination the row, which is used for eliminating unknowns is 
termed the pivot one, and the diagonal element of the pivot row is termed the pivot element. As it can be seen it 
is possible to perform computations only if the pivot element is a nonzero value. Moreover, if the pivot element 
ai,i has a small value, then the division and the multiplication of rows by this element may lead to accumulation 
of the computational errors and the computational instability of the algorithm.  

A possible way to avoid this problem may consist in the following: at each next iteration of the Gaussian 
elimination it is necessary to determine the coefficient with the maximum absolute magnitude in the column, 
which corresponds to the eliminated variable, i.e.  
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and choose the row, which contains this coefficient, as the pivot one (this scheme of choosing the pivot value is 
termed the method of partial pivoting). 

The computational complexity of the Gaussian elimination with the method of partial pivoting is of order 
O(n3). 

 Back Substitution 

After the matrix of the coefficients has been reduced to the upper triangle form, it becomes possible to find 
the values of the unknowns. The value of the variable xn-1 may be calculated from the last equation of the 
transformed system. After that it is possible to determine the variable xn-2 from the second to last equation and so 
on. In the general form the computations performed during the back substitution may be presented by means of 
the following relations: 
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It may be explained as previously using the example of the linear equation systems discussed in the 
previous subsection: 
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From the last equation of the system, the value of the variable x2 is 3. As a result, it becomes possible to solve 
the second equation and to find the value of the unknown x1=13, i.е.  
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The value of the unknown x0, which is equal to -44, is determined at the last iteration of the back substitution.  
With regard to the following parallel execution, it is possible to note that the accounting of the obtained 

unknown values may be performed in all the system equations at once (these operations may be performed in the 
equations simultaneously and independently). Thus, in the example under consideration the system after the 
determination of the value of the unknown x2 may be reduced to the following form:  
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The computational complexity of the back substitution in  the Gauss algorithm is O(n2). 

 Exercise 3 – The Realization of the Sequential Gauss Algorithm  

In order to do the Exercise you should implement the Gauss algorithm of solving the linear equation 
systems. The initial variant of the program to be developed is given in the project Serial Gauss, which contains a 
certain part of the initial code and the necessary project parameters. While doing this Exercise it is necessary to 
add the input operations of initial matrix size, initial data setting, and the operations of the Gauss algorithm 
implementation and result output to the given variant of the program.  
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 Task 1 – Open the Project SerialGauss  

Open the project SerialGauss using the following steps: 
• Start the application Microsoft Visual Studio 2005, if it has not been started yet, 
• Execute the command Open→Project/Solution in the menu File, 
• Choose the folder с:\MsLabs\SerialGauss in the dialog window Open Project 
• Make the double click on the file SerialGauss.sln or execute the command Open after selecting the 

file. 
After the project has been open in the window Solution Explorer (Ctrl+Alt+L), make the double click on 

the file of the initial code SerialGauss.cpp, as it is shown in Figure 3.2. After that, the code, which is to be 
enhanced, will be opened in the Visual Studio workspace. 

 
Figure 3.2. Opening the File SerialGauss.cpp 

The file SerialGauss.cpp provides access to the necessary libraries and also contains the initial variants of 
the head program function – the function main. It provides the possibility to declare the variables and to print out 
the initial program message.   

Let us consider the variables, which are used in the main function of the application. The first two of them 
(pMatrix and pVector) are correspondingly the matrix of the linear equation system and the vector of the right 
system parts. The third variable pResult is the vector, which should be obtained as a result of solving the linear 
equation system. The variable Size defines the size of the matrix and the vectors.   

  double* pMatrix;  // Matrix of the linear system 
  double* pVector;  // Right parts of the linear system 
  double* pResult;  // Result vector 
  int Size;         // Size of the matrix and the vector 

As in previous labs, in order to store the matrix we should use a one-dimensional array, where the matrix is 
stored row by row. Thus, the element, located at the intersection of the i-th row and the j-th matrix column in a 
one-dimensional array, has the index i*Size+j. 

The program code, which follows the variable declaration, is the initial message input and waiting for 
pressing any key before the application is terminated: 

  printf("Serial Gauss algorithm for solving linear systems\n"); 
  getch(); 

Now it is possible to make the first application run. Execute the command Rebuild Solution in the menu 
Build.  This command makes possible to compile the application. If the application is compiled successfully (in 
the lower part of the Visual Studio window there is the following message: "Rebuild All: 1 
succeeded, 0 failed, 0 skipped"), press the key F5 or execute the command Start Debugging of 
the menu Debug.  

Right after the program starts the following message will appear in the command console:  
"Serial Gauss algorithm for solving linear systems ".  

Press any key to terminate the program execution. 

 Task 2 –Input the Matrix and Vector Sizes 

In order to input the initial data of the Gauss algorithm of solving the linear equation systems, we will 
develop the function ProcessInitialization. This function is aimed at determining the matrix and vector sizes, 
allocating the memory for the initial matrix pMatrix and the vector pVector, and the result vector pResult. It is 
also used for setting the element values of the initial objects. Thus, the function should have the following 
heading:  

// Function for memory allocation and data initialization 
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void ProcessInitialization (double* &pMatrix, double* &pVector,  
  double* &pResult, int &Size); 

At the first stage it is necessary to input the matrix size (to set the value of the variable Size).  Add the bold 
marked code to the function ProcessInitialization: 

// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pMatrix, double* &pVector,  
  double* &pResult, int &Size) { 
  // Setting the size of the matrix and the vector 
  printf("\nEnter the size of the matrix and the vector: "); 
  scanf("%d", &Size); 
  printf("\nChosen size = %d\n", Size); 
} 

The user can input the matrix size, which is read from the standard input stream stdin and stored in the 
integer variable Size.  After that the value of the variable Size is printed (see Figure 3.3). 

Add the call of the function ProcessInitialization to the main function following the initial message line: 

void main() { 
  double* pMatrix;  // Matrix of the linear system 
  double* pVector;  // Right parts of the linear system 
  double* pResult;  // Result vector 
  int Size;         // Size of the matrix and the vectors 
  time_t start, finish; 
  double duration; 
 
  printf ("Serial Gauss algorithm for solving linear systems \n"); 
  ProcessInitialization(pMatrix, pVector, pResult, Size); 
  getch(); 
} 

Compile and run the application. Make sure that the value of the variable Size is set correctly. 

 
Figure 3.3. Setting the Matrix and the Vector Sizes  

As in previous labs, we will check the input correctness. Let us check the size. If there is an error there  (the 
size is either equal to zero or negative), we will continue to ask for the matrix size until a positive number is 
entered. To implement this behavior let us add the code, which inputs the matrix size in the loop:  

  // Setting the size of the matrix and the vector 
  do { 
    printf("\nEnter the size of the matrix and the vector: "); 
    scanf("%d", &Size); 
    printf("\nChosen size = %d", Size); 
     
    if (Size <= 0) 
      printf("\nSize of objects must be greater than 0!\n"); 
  } while (Size <= 0); 

Compile and run the application. Try to enter a nonpositive number as the matrix size. Make sure that the 
invalid situations are processed correctly. 

 Task 3 – Input the Initial Data  

The function of the computation process initialization must also provide memory allocation for object 
storage (add the bold marked code to the function ProcessInitialization): 

// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
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  double* &pCMatrix, int &Size) { 
  // Setting the size of the matrix and the vector 
  do { 
    <…> 
  } 
  while (Size <= 0); 
 
  // Memory allocation  
  pMatrix = new double [Size*Size]; 
  pVector = new double [Size]; 
  pResult = new double [Size]; 
} 

Further, it is necessary to set the values of all the matrix elements of the linear equation system pMatrix and 
the right part vector pVector.  It should be noted that the matrix of the linear equation systems cannot be set 
arbitrarily. The solution for the linear equation system exists only in the case when the matrix of the linear 
equation system is non-degenerate (i.e. there is a reverse matrix for this matrix). It is not reasonable to check 
whether the matrix generated arbitrarily is non-degenerate (this operation is very “expensive”). That is why we 
will develop the function of generating the initial data set so that the matrix is originally non-degenerate.  We 
will generate the lower triangle matrix, i.e. the matrix where all non-zero elements are located either on the main 
diagonal or lower than the diagonal. To set the element values of the matrix pMatrix and the vector pVector we 
will develop the function DummyDataInitialization.  The heading and the implementation of the function are 
given below: 

// Function for simple initialization of the matrix and the vector elements 
void DummyDataInitialization (double* pMatrix, double* pVector, int Size) { 
  int i, j;  // Loop variables 
  for (i=0; i<Size; i++) { 
    pVector[i] = i+1; 
    for (j=0; j<Size; j++) { 
      if (j <= i) 
        pMatrix[i*Size+j] = 1; 
      else 
        pMatrix[i*Size+j] = 0; 
     } 
  } 
}  

As it can be seen from the given code, this function provides setting the matrix and the vector elements in 
rather a simple way: the values of all the elements of the matrix матрицы pMatrix, which are located above the 
main diagonal, are equal to 0, the rest of the elements are equal to 1. The vector pVector consists of sequential 
integer positive numbers from 1 to Size. So in case when the user chooses the object size equal to 4, the 
following matrix and the vector will be determined:   
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The function DummyDataInitialization must be called after allocating the memory in the function 
ProcessInitialization: 

// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, int &Size) { 
    <…> 
  // Memory allocation  
  <…> 
 
  // Initialization of the matrix and the vector elements 
  DummyDataInitialization(pMatrix, pVector, Size); 
} 



Let us develop two more functions, which help to control data input. These are the functions of the 
formatted object output: PrintMatrix and PrintVector. These functions were developed in Lab 1 and the code of 
the functions is available in the project (more detailed information on the functions PrintMatrix and PrintVector  
is given in Task 3, Exercise 2, Lab 1). Let us add these functions to print out the matrix pMatrix and the vector 
pVector  to the main function: 

  // Memory allocation and data initialization 
  ProcessInitialization(pAMatrix, pBMatrix, pCMatrix, Size); 
 
  // Matrix and vector output 
  printf ("Initial Matrix \n");  
  PrintMatrix(pMatrix, Size, Size); 
  printf("Initial Vector \n"); 
  PrintVector(pVector, Size); 

Compile and run the application. Make sure that the data input is executed according to the above-
described rules (Figure 3.4). Run the application several times setting various matrix sizes.  

 
Figure 3.4. The Result of the Program Execution after the Completion of Task 3 

It should be noted that if the matrix of the linear equation system and the vector of the right parts are set 
according to the above described rules, then the system has a simple solution, and all the result vector elements 
of the vector pResult must be equal to 1. 

Let us develop one more function of generating the initial data. In this function we will also set the lower 
triangle matrix but the matrix elements and the elements of the right part vector will be determined by means of 
a random number generator (the random number generator is initiated by the current clock): 

// Function for random initialization of the matrix and the vector elements 
void RandomDataInitialization(double* pMatrix, double* pVector, int Size) { 
  int i, j;  // Loop variables 
  srand(unsigned(clock())); 
  for (i=0; i<Size; i++) { 
    pVector[i] = rand()/double(1000); 
    for (j=0; j<Size; j++) { 
      if (j <= i) 
        pMatrix[i*Size+j] = rand()/double(1000); 
      else 
        pMatrix[i*Size+j] = 0; 
    } 
  } 
} 

Replace the call of the function for simple generation of the initial data DummyDataInitialization by the 
call of the function for random generation RandomDataInitialization. Compile and run the application. Make 
sure that the data is set according to the above described rules. 

 Task 4 –Terminate the Program Execution 

Let us first develop the function for correct computation process termination, before working out the Gauss 
algorithm. For this purpose it is necessary to deallocate the memory, which has been dynamically allocated in the 
course of the program execution. Let us develop the corresponding function ProcessTermination. The memory 
has been allocated for storing the initial matrix pMatrix and the vector pVector, and also for storing the result 
vector of solving the linear equation system pResult. These objects, consequently, should be given to the 
function  ProcessTermination as arguments: 

// Function for computational process termination 
void ProcessTermination (double* pMatrix,double* pVector,double* pResult) {  
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  delete [] pMatrix; 
  delete [] pVector; 
  delete [] pResult; 
}  

The function ProcessTermination should be called immediately before the program termination:  

  // Memory allocation and data initialization 
  ProcessInitialization(pMatrix, pVector, pResult, Size); 
 
  // Matrix and vector output 
  printf ("Initial Matrix \n");  
  PrintMatrix(pMatrix, Size, Size); 
  printf("Initial Vector \n"); 
  PrintVector(pVector, Size);  
 
  // Process termination 
  ProcessTermination(pMatrix, pVector, pResult); 

Compile and run the application. Make sure it is being executed correctly. 

 Task 5 – Implement the Gaussian Elimination 

Let us develop the main computational part of the program. In order to solve the linear equation system by 
means of the Gauss algorithm, we will implement the function SerialResultCalculation, which gets the initial 
matrix pMatrix and the vector pVector, the sizes of the objects Size, and the result vector pResult as input 
parameters. 

According to the algorithm given in Exercise 2, the execution of the Gauss algorithm consists of the two 
stages: the Gaussian elimination and the back substitution. At the stage of executing the Gaussian elimination the 
linear equation system is reduced to the upper triangle form by means of equivalent transformations. In order to 
carry out this stage, we will develop the function SerialGaussianElimination. In the course of executing the back 
substitution, the result vector values are determined by means of reducing the matrix to the diagonal form. In 
order to carry out this stage, we will develop the function SerialBackSubstitution. Thus, the code of the function 
SerialResultCalculation should be the following: 

// Function for the execution of Gauss algorithm 
void SerialResultCalculation(double* pMatrix, double* pVector,  
  double* pResult, int Size) { 
  // Gaussian elimination 
  SerialGaussianElimination (pMatrix, pVector, Size); 
  // Back substitution 
  SerialBackSubstitution (pMatrix, pVector, pResult, Size);  
} 

In this task we will develop the Gaussian elimination. The back substitution will be executed in the next 
task of the lab.  

The Gaussian elimination reduces the linear equation system matrix to the upper triangle form by means of 
equivalent transformation. At each iteration of the executed transformations we can use the method of partial 
pivoting for choosing the pivot row (see Exercise 2). According to this method the row, containing the element 
of the next matrix column, which is maximum in absolute magnitude, is chosen as the pivot one.  

In order to store the order of choosing the pivot rows, we will use the array pSerialPivotPos. The  
i-th element of the array will store the number of the row, which was chosen as the pivot one in the course of 
executing the i-th iteration of the Gaussian elimination. Besides, we will use one more auxiliary array 
pSerialPivotIter. Each element of the array pSerialPivotIter[i] will store the number of the iteration , where the 
row with the number i was chosen as the pivot one. Originally we will fill the array pSerialPivotIter with the 
elements equal to -1 (i.e. the value -1 in the element of the array pSerialPivotIter[i] means that the row with the 
number i has not been chosen as the pivot one yet). 

Let us declare the corresponding arrays as global variables, allocate the memory for these arrays before the 
beginning of executing the function GaussianElimination, deallocate the allocated memory after executing the 
back substitution of the Gauss method (the function BackSubstitution):  

int* pSerialPivotPos;  // Number of pivot rows selected at the iterations 
int* pSerialPivotIter; // Iterations, at which the rows were pivots 
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// Function for the execution of Gauss algorithm 
void SerialResultCalculation(double* pMatrix, double* pVector,  
  double* pResult, int Size) { 
 
  // Memory allocation 
  pSerialPivotPos  = new int [Size]; 
  pSerialPivotIter = new int [Size]; 
  for (int i=0; i<Size; i++) { 
    pSerialPivotIter[i] = -1; 
  } 
  // Gaussian elimination 
  SerialGaussianElimination (pMatrix, pVector, Size); 
  // Back substitution 
  SerialBackSubstitution (pMatrix, pVector, pResult, Size);  
 
  // Memory deallocation 
  delete [] pSerialPivotPos; 
  delete [] pSerialPivotIter; 
} 

According to the computational scheme of the Gaussian elimination, it is necessary to determine the pivot 
matrix row at each iteration. The pivot row contains the column element being maximum in the absolute 
magnitude. This column number is equal to the number of the current iteration and the pivot row is selected 
among the rows, which have not been previously chosen as the pivot ones. The number of the pivot row is stored 
in the variable Pivot and is recorded in the corresponding element of the array pSerialPivotPos. Besides, the 
value of the element of the array pSerialPivotIter, which corresponds to the selected row, is set equal to the 
number of the current iteration. 

Let us develop the function FindPivotRow in order to choose the pivot row. It is necessary to use the matrix 
of the linear equation system pMatrix, the matrix size Size and the number of the current iteration Iter as the 
arguments of the function. This function must look through the rows, which have not been previously selected as 
the pivot ones, choose among them the row, which contains the maximum element in the position Iter, and 
return the number of the selected row: 

// Function for finding the pivot row 
int FindPivotRow(double* pMatrix, int Size, int Iter) { 
  int PivotRow = -1;    // Index of the pivot row 
  double MaxValue =  0; // Value of the pivot element 
  int i;                // Loop variable 
  
  // Choose the row, that stores the maximum element 
  for (i=0; i<Size; i++) { 
    if ((pSerialPivotIter[i] == -1) &&  
       (fabs(pMatrix[i*Size+Iter]) > MaxValue))) { 
      PivotRow = i; 
      MaxValue = fabs(pMatrix[i*Size+Iter]); 
    } 
  } 
  return PivotRow; 
} 

Let us add the call of the function FindPivotRow to the function, which carries out the Gaussian 
elimination. We will store the obtained value in corresponding element of the array pPivotPos and print the 
numbers of the selected pivot rows in order to check the computation correctness: 

// Function for the Gaussian elimination 
void SerialGaussianElimination(double* pMatrix,double* pVector,int Size) { 
  int Iter;     // Number of the iteration of the Gaussian elimination 
  int PivotRow; // Number of the current pivot row  
  for (Iter=0; Iter<Size; Iter++) { 
    // Finding the pivot row 
    PivotRow = FindPivotRow(pMatrix, Size, Iter); 
    pSerialPivotPos[Iter] = PivotRow; 
    pSerialPivotIter[PivotRow] = Iter; 
  } 
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  printf ("Indices of the pivot rows: \n"); 
  for (int i=0; i<Size; i++) 
    printf("%d ", pSerialPivotPos[i]); 
} 

Turn the call of the function, which executes the back substitution of the Gauss method, into comments in 
the function SerialResultCalculation. Add the call of the function SerialResultCalculation to the main function: 

void main() { 
  <…> 
  // Memory allocation and data initialization 
  ProcessInitialization(pMatrix, pVector, pResult, Size); 
 
  // The Matrix and the vector output 
  <…> 
  // Execution of Gauss algorithm 
  SerialResultCalculation(pMatrix, pVector, pResult, Size); 
 
  // Computational process termination 
  ProcessTermination(pMatrix, pVector, pResult); 
  getch(); 
} 

Compile and run the application. Make sure that the pivot rows are chosen correctly. If you use the function 
DummyDataInitialization, the number of the pivot rows must coincide with the number of the iterations, at 
which the rows were selected. If the function RandomDataInitialization is used, the results of the print are 
shown in Figure 3.5 (to make it clearer the values of the pivot elements are marked by the red color). 

 

Figure 3.5. Selecting the Leading Pivot Rows 

After selecting the pivot rows, these rows multiplied by the corresponding multipliers are subtracted from 
the rows, which have not yet been chosen as the pivot ones, and thus, the elements of the corresponding columns 
are zeroed. In order to carry out the subtraction we will develop the function SerialEliminateColumns. This 
function takes the matrix of the linear equation system pMatrix, the vector of the right part pVector, the number 
of the current pivot row Pivot, the number of the current iteration Iter and the size Size as the input arguments. 
For all the rows of the matrix pMatrix the function EliminateRows executes the following operations: it checks 
whether the given row has been chosen as the pivot one at one of the previous iterations using the values 
recorded in the array pSerialPivotIter; and if the result of the check is negative, the row undergoes the 
transformation according to formula (3.3): 

// Function for the column elimination 
void SerialColumnElimination (double* pMatrix, double* pVector, int Pivot,  
  int Iter, int Size) { 
  double PivotValue, PivotFactor;  
  PivotValue = pMatrix[Pivot*Size+Iter]; 
  for (int i=0; i<Size; i++) { 
    if (pSerialPivotIter[i] == -1) { 
      PivotFactor = pMatrix[i*Size+Iter] / PivotValue; 
      for (int j=Iter; j<Size; j++) { 
        pMatrix[i*Size + j] -= PivotFactor * pMatrix[Pivot*Size+j]; 
      } 
      pVector[i] -= PivotFactor * pVector[Pivot]; 
    } 
  }   
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} 

Add the call of the function SerialColumnElimination to the code of the function, which executes the 
Gaussian elimination. Instead of printing the array pPivotPos print the matrix of the linear equation system 
pMatrix. It must be reduced to the upper triangle form (accurate to the row permutation, i.e. there must be a 
possibility to permute the matrix rows so as to obtain the upper triangle matrix) (see Figure 3.6). 

// Function for the Gaussian elimination 
void SerialGaussianElimination(double* pMatrix,double* pVector,int Size) { 
  int Iter;       // Number of the iteration of the Gaussian elimination  
  int PivotRow;   // Number of the current pivot row 
  for (Iter=0; Iter<Size; Iter++) { 
    // Finding the pivot row 
    PivotRow = FindPivotRow(pMatrix, Size,Iter); 
    pSerialPivotPos[Iter] = PivotRow; 
    pSerialPivotIter[PivotRow] = Iter; 
    SerialColumnElimination(pMatrix, pVector, PivotRow, Iter, Size); 
  } 
  printf ("The matrix of the linear system after the elimination: \n"); 
  PrintMatrix(pMatrix, Size, Size); 
} 

Compile and run the application. Make sure that the Gaussian elimination is executed correctly.  

 

Figure 3.6. The Result of the Execution of the Gaussian Elimination 

 Task 6 – Implement the Back Substitution 

To execute the back substitution of the Gauss algorithm we will develop the function 
SerialBackSubstitution.  Let us use the matrix of the linear equation system pMatrix, the vector of the right parts 
pVector, the result vector pResult and the size Size as the function input arguments: : 

// Function for the back substution 
void SerialBackSubstitution (double* pMatrix, double* pVector,  
  double* pResult, int Size); 

The back substitution is described in detail in Exercise 2. The execution of the back substitution starts with 
the matrix row, which was chosen as the pivot one at the last iteration of the Gaussian elimination. You can find 
out the row number from the last element of the array pSerialPivotPos (on the analogy with this, the number of 
the row chosen as the pivot at the iteration next to the last, is stored in the next to the last element of the array 
pSerialPivotPos etc.). Using this row you may compute an element of the result vector. Then using the element it 
is possible to simplify the remaining matrix rows: 

// Function for the back substution 
void SerialBackSubstitution (double* pMatrix, double* pVector,  
  double* pResult, int Size) { 
  int RowIndex, Row; 
  for (int i=Size-1; i>=0; i--) { 
    RowIndex = pSerialPivotPos[i]; 
    pResult[i] = pVector[RowIndex]/pMatrix[Size*RowIndex+i]; 
    for (int j=0; j<i; j++) { 
      Row = pSerialPivotPos[j]; 
      pVector[j] -= pMatrix[Row*Size+i]*pResult[i]; 
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      pMatrix[Row*Size+i] = 0; 
    } 
  } 
} 

Eliminate the matrix print after the execution of the Gaussian elimination. In order to generate the initial 
data use the method DummyDataInitialization again. Restore the call of the function executing the back 
substitution (delete the comment signs in the call line). Call the print of the result vector after the execution of 
the Gauss algorithm in the main function: 

void main() { 
 <…> 
 
  // The execution of Gauss algorithm  
  SerialResultCalculation(pMatrix, pVector, pResult, Size); 
 
  // Printing the result vector 
  printf ("\n Result Vector: \n"); 
  PrintVector(pResult, Size); 
 
  // Computational process termination 
  ProcessTermination(pMatrix, pVector, pResult); 
  getch(); 
} 

Compile and run the application. If the algorithm is implemented correctly, all the result vector elements 
must be equal to 1 (Figure  3.7). 

 

Figure 3.7. The Result of Executing the Gauss Algorithm  

 Task 7 – Carry out Computational Experiments  

In order to test the speed up of the parallel calculations, it is necessary to carry out experiments on 
calculating the serial algorithm execution time. It is reasonable to analyze the algorithm execution time for 
considerably large linear equation systems. We will set the elements of large matrices and vectors by means of 
the random data generator (the function RandomDataInitialization): 

In order to determine the time, we will add the calls of the functions, which allow us to find out the 
computation execution time, to the obtained program. As previously, we will use the following function: 

time_t clock(void); 

Let us add the computation and the output of the Gauss method execution time to the program code. For 
this purpose we will clock in before and after the call of the function SerialResultCalculation: 

  // The execution of Gauss algorithm 
  start = clock(); 
  SerialResultCalculation(pMatrix, pVector, pResult, Size); 
  finish = clock(); 
  duration = (finish-start)/double(CLOCKS_PER_SEC); 
 
  // Printing the result vector 
  printf ("\n Result Vector: \n"); 
  PrintVector(pResult, Size); 
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  // Printing the execution time of Gauss method 
  printf("\n Time of execution: %f\n", duration);  

Compile and run the application. In order to carry out the computational experiments with large linear 
equation systems, eliminate the matrix and vector print and the result vector print (transform the corresponding 
code lines into comment). Carry out the computational experiments and register the results in the following 
table:  

Table 3.1. The Execution Time of the Serial Gauss Algorithm 

Test number Matrix Size Execution Time (sec) 
1 10  
2 100  
3 500  
4 1,000  
5 1,500  
6 2,000  
7 2,500  
8 3,000  

The analysis of the computations executed in the Gauss method can demonstrate that the theoretical 
execution time  for the serial Gauss algorithm may be  calculated in accordance with the following expression 
(see Section 9 “Parallel methods of solving the linear equation systems”) 

( ) τ⋅+= 23
1 3/2 SizeSizeT          (3.5) 

where τ is the execution time of  a basic computational operation.  
Let us fill out the table of comparison of the experiment execution time to the time, which may be obtained 

according to the formula (3.5). In order to compute the execution time of a single operation τ, we will apply the 
following technique: choose one of the experiments as a pivot. Then let us divide the execution time of a pivot 
experiment by the number of the executed operations (the number of the operations may be calculated using 
formula (3.5)). Thus, we will calculate the execution time of a basic computational operation. Then using this 
value we will calculate the theoretical execution time for the remaining experiments. It should be noted that the 
execution time of this basic operation depends generally speaking on the linear equation system size. That is why 
we should be oriented at a certain average case while choosing the pivot.   

Compute the theoretical execution time for the Gauss algorithm. Give the results in the form of the table:  
Table 3.2. The Comparison of the Experiment Execution Time of the Serial Gauss Algorithm to the 

Theoretically Calculated Time 

Basic Computational Operation Execution Time τ (sec): 
Test Number Matrix Size Execution Time (sec) Theoretical Time (sec) 

1 10   

2 100   
3 500   
4 1,000   
5 1,500   
6 2,000   
7 2,500   
8 3,000   

 Exercise 4 –Developing the Parallel Gauss Algorithm  

 Subtask Definition  

In close consideration of the Gauss method it is possible to note that all the computations are reduced to the 
same computational operations on the rows of the coefficient matrix of the linear equation system. As a result, 
the data parallelism principle may be applied as the basis of the Gauss algorithm parallel implementation. All the 
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computations connected with processing a row of the matrix A and the corresponding element of the vector b 
may be taken as the basic computational subtask in this case.  

 Analysis of Information Dependencies  

Let us consider the general scheme of parallel computations and the information dependencies among the 
basic subtasks, which appear in the course of computations. 

For the execution of the Gaussian elimination stage it is necessary to perform (n-1) iterations of 
eliminating the unknown variables in order to transform the matrix A to the upper triangle form.  

The execution of iteration i ,  0≤  i<n-1,  of the Gaussian elimination includes a number of sequential 
operations. First of all, at the very beginning of the iteration it is necessary to select the pivot row, which (if the 
partial pivoting scheme is used) is determined by the search of the row with the maximum absolute value among 
the elements of the column i , which corresponds to the eliminated variable x i . As the rows of matrix A are 
distributed among subtasks, the subtasks with the numbers k,  k>i ,  should exchange their coefficients of the 
eliminated variable x i  for the maximum value search. After all the necessary data has been accumulated in each 
subtask, it is possible to determine, which of them holds the pivot row, and which value is the pivot element. 

To carry out the computations further the pivot subtask has to broadcast its pivot row of the matrix A and 
the corresponding element of the vector b to all the other subtasks with the numbers k,  k>i . After receiving the 
pivot row the subtasks perform the subtraction of rows, thus, providing the elimination of the corresponding 
variable x i . 

During the execution of the back substitution the subtasks perform the necessary computations for 
calculating the value of the unknowns. As soon as some subtask  i ,  0≤ i<n-1,  determines the value of its 
variable x i , this value must be broadcasting to all the subtasks with the numbers k,  k<i.  After communications 
the subtasks substitute the variables x i  for the obtained value and modify the elements of the vector b. 

 Scaling and Subtask Distribution among the Processors  

The basic subtasks are characterized by the same computational complexity and balanced amount of the 
transmitted data. In case when the size of the matrix, which describes the linear equation system appears to be 
greater than the number of the available processors (i.e. p<n), the basic subtasks may be enlarged by uniting 
several matrix rows in a subtask. Let us make use of the familiar scheme of block striped data partitioning: each 
process is allocated a continuous sequence of linear equation matrix rows.  

The distribution of the subtasks among the processors must take into account the nature of the 
communication operations performed in the Gauss method. One-to-all broadcast is the main form of the 
information communication of the subtasks. As a result, the data transmission network topology must be a 
hypercube or a complete graph in order to implement the desired information communications among the basic 
subtasks efficiently.   

 Exercise 5 – Coding the Parallel Gauss Program for Solving the Linear 
Equation Systems  

To do this Exercise you should develop the parallel Gauss program for solving the linear equation systems. 
This Exercise will help you:  

• To get experience in developing the nontrivial parallel programs, 
• To be familiar with collective data transmission operations in MPI. 

Task 1 – Open the Project ParallelGauss 

Open the project ParallelGauss using the following steps: 
• Start the application Microsoft Visual Studio 2005, if it has not been started yet, 
• Execute the command Open→Project in the menu File, 
• Choose the folder с:\MsLabs\ParallelGauss in the dialog window Open Project, 
• Make the double click on the file ParallelGauss.sln or select it and execute the command Open. 
After the project has been open in the window Solution Explorer (Ctrl+Alt+L), make the double click on 

the file of the initial code ParallelGauss.cpp, as it is shown in Figure 3.8. After that, the code, which is to be 
enhanced, will be opened in the Visual Studio workspace. 



 
Figure 3.8. Opening the File ParallelGauss.cpp with the use of the Solution Explorer 

The main function of the parallel application, which is located in the file ParallelGauss.cpp, contains the 
declaration of the necessary variables, the calls of the initialization functions and the MPI program environment 
execution termination, the functions for determining the number of the available processes and the process rank: 

int ProcNum = 0;      // Number of the available processes  
int ProcRank = 0;     // Rank of the current process 
 
void main(int argc, char* argv[]) { 
  double* pMatrix;        // Matrix of the linear system 
  double* pVector;        // Right parts of the linear system 
  double* pResult;        // Result vector   
  int     Size;           // Size of the matrix and the vectors 
  double Start, Finish, Duration; 
 
  setvbuf(stdout, 0, _IONBF, 0); 
 
  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 
  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 
 
  if (ProcRank == 0) 
    printf("Parallel Gauss algorithm for solving linear systems\n"); 
 
  MPI_Finalize(); 
} 

It should be noted that the variables ProcNum and ProcRank were declared global as in case of the previous 
labs.  

The following functions and variables copied from the serial project, are also located in the file 
ParallelGauss.cpp: the global variable pSerialPivotPos, the functions DummyDataInitialization, 
RandomDataInitialization, SerialResultCalculation, SerialGaussianElimination, SerialBackSubstitution, 
SerialColumnElimination, FindPivotRow (the use of the functions and variables is described in detail in Exercise 
3 of this lab). The first two functions will be used in the parallel application for data initializing. The other 
functions will provide the opportunity to execute the serial algorithm and to compare the results of executing the 
serial and the parallel Gauss algorithms.  

In this parallel application we will use the functions PrintMatrix and PrintVector to print matrices and 
vectors. The implementation of the functions has also been copied to the parallel application. Besides, there are 
also preliminary versions for the initialization functions (ProcessInitialization) and the function of the process 
termination (ProcessTermination).  

Compile and run the application using the Visual Studio. Make sure that the initial message is output on the 
command console:  

"Parallel Gauss algorithm for solving linear equation systems ". 

 Task 2 – Input the Initial Data 

At the next stage of the development of the parallel application it is necessary to set the sizes of the linear 
equation system matrix, the right part vector, the result vector and to allocate memory for storing them. 
According to the parallel computation scheme the initial objects can exist only on the root process (the process 
with the rank 0). On each process at any given moment of time there is a stripe of the linear equation system 
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matrix, a block of the right part vector and a block of the result vector. Let us determine the variables for storing 
the blocks and the block sizes:  

void main(int argc, char* argv[]) { 
  double* pMatrix;        // Matrix of the linear system 
  double* pVector;        // Right parts of the linear system 
  double* pResult;        // Result vector 
  double *pProcRows;      // Rows of the matrix A 
  double *pProcVector;    // Block of the vector b 
  double *pProcResult;    // Block of the vector x 
  int     Size;           // Size of the matrix and vectors 
  int     RowNum;         // Number of the matrix rows 
  double Start, Finish, Duration; 

In order to determine the matrix size and the vector size, to calculate the number of matrix rows, which will 
be processed by a given process, in order to allocate the memory for storing the matrix, the vectors and their 
blocks and also to generate the initial matrix and vector elements, we will develop the function 
ProcessInitialization.  

// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pMatrix, double* &pVector,  
  double* &pResult, double* &pProcRows, double* &pProcVector,  
  double* &pProcResult, int &Size, int &RowNum); 

In order to set the size Size, we will implement a dialog with the user as it has been done in the previous 
labs. The application to be developed in this Exercise is oriented at the most general case: it is not required that 
the size should be divisible by the number of the available processes. The only restriction is that the size Size 
should not be smaller than the number of the processes ProcNum so that each process has at least a row of the 
linear equation system matrix. If the user inputs an incorrect number, he is asked to repeat the input. The dialog 
is carried out only on the root process. When the sizes of the matrix and the vector are defined correctly, the 
value of the variable Size is broadcast to all the processes: 

// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pMatrix, double* &pVector,  
  double* &pResult, double* &pProcRows, double* &pProcVector,  
  double* &pProcResult, int &Size, int &RowNum) { 
  if (ProcRank == 0) { 
    do { 
      printf("\nEnter the size of the matrix and the vector: "); 
      scanf("%d", &Size); 
      if (Size < ProcNum) { 
        printf ("Size must be greater than number of processes! \n"); 
      } 
    } while (Size < ProcNum); 
  } 
  MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD); 
} 

After the size is set, it is possible to determine the number of the matrix rows, which will be processed by 
each process, and to allocate the memory for storing the matrix, the vector, the result matrix, the matrix stripe 
and the vector blocks. In order to determine the number of rows RowNum, which will be processed by a given 
process, let us use the method described in Lab 1 for the development of the parallel application of matrix-vector 
multiplication, if the matrix size is not divisible by the number of processes: 

// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pMatrix, double* &pVector,  
  double* &pResult, double* &pProcRows, double* &pProcVector,  
  double* &pProcResult, int &Size, int &RowNum) { 
  <…>  
  MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD); 
 
  int RestRows = Size; 
  for (int i=0; i<ProcRank; i++)  
    RestRows = RestRows-RestRows/(ProcNum-i); 
  RowNum = RestRows/(ProcNum-ProcRank); 
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  pProcRows = new double [RowNum*Size]; 
  pProcVector = new double [RowNum]; 
  pProcResult = new double [RowNum]; 
 
  if (ProcRank == 0) { 
    pMatrix = new double [Size*Size]; 
    pVector = new double [Size]; 
    pResult = new double [Size]; 
  } 
} 

In order to determine the elements of the linear equation system matrix pMatrix and the right part vector 
pVector we will use the function DummyDataInitialization, which was developed in the course of the 
implementation of the serial Gauss algorithm: 

// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pMatrix, double* &pVector,  
  double* &pResult, double* &pProcRows, double* &pProcVector,  
  double* &pProcResult, int &Size, int &RowNum) { 
  <…>  
  if (ProcRank == 0) { 
    pMatrix = new double [Size*Size]; 
    pVector = new double [Size]; 
    pResult = new double [Size]; 
    // Initialization of the matrix and the vector elements 
    DummyDataInitialization (pMatrix, pVector, Size); 
  } 
}   

Let us call the function ProcessInitialization from the main function of the parallel application. In order to 
control the correctness of the initial data input, we will use the function of the formatted matrix output 
PrintMatrix and the vector PrintVector, let us print out the linear equation system matrix and the right part 
vector on the root process.  

void main(int argc, char* argv[]) { 
  <…>   
  // Memory allocation and data initialization 
  ProcessInitialization(pMatrix, pVector, pResult, pProcRows, pProcVector, 
    pProcResult, Size, RowNum); 
  if (ProcRank == 0) { 
    printf(“Initial matrix \n”); 
    PrintMatrix(pMatrix, Size, Size); 
    printf(“Initial vector \n”); 
    PrintVector(pVector, Size); 
  } 
  MPI_Finalize(); 
} 

Compile and run the application. Make sure that the dialog for the input of the size makes possible to enter 
only the correct size value. Analyze the values of the matrix and the vector. If the data is set correctly, the linear 
system matrix must be lower and triangle, all the elements located lower than the main diagonal must be equal to 
1, the right part vector elements must be integer positive numbers from 1 to Size.  (Figure 3.9). 

 



19 

Figure 3.9. The Test Values of The Initial Data  

 Task 3 – Terminate the Parallel Program 

In order to terminate the application at each stage of development, we should develop the function of 
correct termination. For this purpose we should deallocate the memory, which has been allocated dynamically in 
the course of the program execution. Let us develop the corresponding function ProcessTermination. The 
memory for storing the matrix pMatrix, the vector pVector and the result vector pResult, was allocated on the 
root process; besides, memory was allocated on all the processes for storing the stripe of the matrix pProcRows, 
the blocks of the right part vector pProcVector and the result vector pProcResult. All these objects must be given 
to the function ProcessTermination as arguments: 

// Function for computational process termination 
void ProcessTermination (double* pMatrix, double* pVector, double* pResult, 
  double* pProcRows, double* pProcVector, double* pProcResult) { 
  if (ProcRank == 0) { 
    delete [] pMatrix; 
    delete [] pVector; 
    delete [] pResult; 
  } 
  delete [] pProcRows; 
  delete [] pProcVector; 
  delete [] pProcResult; 
} 

The call of the process termination function must be executed immediately before the call of the 
termination of the parallel program: 

  // Process termination 
  ProcessTermination (pMatrix, pVector, pResult, pProcRows, pProcVector, 
    pProcResult); 
  MPI_Finalize(); 
} 

Compile and run the application. Make sure that it operates correctly. 

 Task 4 – Distribute the Data among the Processes 

In accordance with the parallel computation scheme, described in the previous Exercise, the system of 
linear equations must be distributed among the processes in horizontal stripes (divided into continuous sequences 
of rows).  

The function DataDistribution is responsible for data distribution. The matrix pMatrix and the vector  
pVector, the horizontal stripe of the matrix pProcRows, and the corresponding block of the right part vector 
pProcVector, and also the object sizes (the matrix size and the vector size Size and the number of rows in the 
horizontal stripe RowNum) must be given to the function as arguments:  

// Function for the data distribution among the processes 
void DataDistribution(double* pMatrix, double* pProcRows, double* pVector, 
  double* pProcVector, int Size, int RowNum); 

In order to distribute the matrix into horizontal stripes and broadcast these stripes, we will use the 
procedure described in Lab 1 for the development of the parallel application of matrix vector multiplication in 
case when the matrix size is not divisible by the number of processes.  

// Function for the data distribution among the processes 
void DataDistribution(double* pMatrix, double* pProcRows, double* pVector, 
  double* pProcVector, int Size, int RowNum) { 
 
  int *pSendNum;     // Number of the elements sent to the process 
  int *pSendInd;     // Index of the first data element sent to the process 
  int RestRows=Size; // Number of rows, that have not been distributed yet 
  int i;             // Loop variable 
 
  // Alloc memory for temporary objects 
  pSendInd = new int [ProcNum]; 



20 

  pSendNum = new int [ProcNum]; 
 
  // Define the disposition of the matrix rows for the current process 
  RowNum = (Size/ProcNum); 
  pSendNum[0] = RowNum*Size; 
  pSendInd[0] = 0; 
  for (i=1; i<ProcNum; i++) { 
    RestRows -= RowNum; 
    RowNum = RestRows/(ProcNum-i); 
    pSendNum[i] = RowNum*Size; 
    pSendInd[i] = pSendInd[i-1]+pSendNum[i-1]; 
  } 
 
  // Scatter the rows 
  MPI_Scatterv(pMatrix, pSendNum, pSendInd, MPI_DOUBLE, pProcRows,  
    pSendNum[ProcRank], MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 
    // Free the memory 
  delete [] pSendNum; 
  delete [] pSendInd; 
} 

To partition the vector we will use the same sequence of actions. We will make only slight changes: in case 
of the parallel Gauss algorithm execution we should be able to use the row number and to determine, on which 
of the process the row is located and what number it has in the process stripe. In order to solve the problem 
efficiently we will arrange two global arrays: pProcInd and pProcNum. There must be ProcNum elements in 
each of the arrays. The element of the first array pProcInd[i] determines the number of the first row located on 
the process with rank i. The element of the second array pProcNum[i] determines the number of the linear 
system rows, which are processed by the process with rank i. Let us declare the corresponding global variables, 
allocate the memory for the arrays in the function DataDistribution, fill the arrays with values. It should be noted 
that the arrays may be used for scattering the right part vector by means of the function MPI_Scatter. 

int* pProcInd; // Number of the first row located on the processes 
int* pProcNum; // Number of the linear system rows located on the processes 
 
// Function for the data distribution among the processes 
void DataDistribution(double* pMatrix, double* pProcRows, double* pVector, 
  double* pProcVector, int Size, int RowNum) { 
  <…> 
  // Alloc memory for temporary objects 
  pProcInd = new int [ProcNum]; 
  pProcNum = new int [ProcNum]; 
  <…> 
  // Free the memory 
  delete [] pSendNum; 
  delete [] pSendInd;  
} 

Correspondingly, it is necessary to call the data distribution function from the main program immediately 
after the call of the computational process initialization, before starting the execution of the Gauss algorithm: 

  // Memory allocation and data initialization 
  ProcessInitialization(pMatrix, pVector, pResult, pProcRows, pProcVector, 
    pProcResult, Size, RowNum); 
 
  // Distributing the initial data between the processes 
  DataDistribution(pMatrix, pProcRows, pVector, pProcVector, Size, RowNum);  

Let us delete the initial print after the execution of the function ProcessInitialization. We will check the 
correctness of the data distribution among the processes up. For this purpose we should print the matrix and 
vector, and then the matrix stripes and the vector blocks located on each of the processes after the execution of 
the function DataDistribution.  Let us add to the application code one more function, which serves for checking 
the correctness of the data distribution stage. This function will be referred to as TestDistribution.  

In order to arrange the formatted matrix and vector output we will use the functions PrintMatrix and 
PrintVector: 



21 

// Function for testing the data distribution 
void TestDistribution(double* pMatrix, double* pVector, double* pProcRows,  
  double* pProcVector, int Size, int RowNum) { 
  if (ProcRank == 0) { 
    printf("Initial Matrix: \n"); 
    PrintMatrix(pMatrix, Size, Size); 
    printf("Initial Vector: \n"); 
    PrintVector(pVector, Size); 
  } 
  for (int i=0; i<ProcNum; i++) { 
    if (ProcRank == i) { 
      printf("\nProcRank = %d \n", ProcRank); 
      printf(" Matrix Stripe:\n"); 
      PrintMatrix(pProcRows, RowNum, Size); 
      printf(" Vector: \n"); 
      PrintVector(pProcVector, RowNum); 
    } 
    MPI_Barrier(MPI_COMM_WORLD); 
  } 
} 

Add the call of the function of data distribution immediately after the function DataDistribution: 

  // Distributing the initial data between the processes 
  DataDistribution(pMatrix, pProcRows, pVector, pProcVector, Size, RowNum); 
  TestDistribution(pMatrix, pVector, pProcRows, pProcVector, Size, RowNum);  

Compile the application. If you find errors in the process of compiling, correct them, comparing your code 
to the code given in the lab. Run the application. Make sure that the data is distributed correctly (Figure 3.10):   

 
Figure 3.10. Data Distribution for the Cases when the Application Is Run Using Four Processes and 

the Size of the Equation System is Equal to Six 

 Task 5 – Implement the Gaussian Elimination  

According to the computational scheme of the Gauss algorithm for solving the linear equation systems, the 
method consists of the two stages: the Gaussian  el iminat ion and the back subst i tu t ion. In order to 
execute the parallel Gauss algorithm we will develop the function ParallelResultCalculation, which contains the 
calls of the functions for executing the Gauss algorithm stages: 

// Function for execution of the parallel Gauss algorithm 
void ParallelResultCalculation(double* pProcRows, double* pProcVector,  
  double* pProcResult, int Size, int RowNum) { 
  // Gaussian elimination 
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  ParallelGaussianElimination (pProcRows, pProcVector, Size, RowNum); 
  // Back substitution 
  ParallelBackSubstitution (pProcRows, pProcVector, pProcResult, Size, 
    RowNum); 
}   

In order to develop the parallel version of Gauss algorithm we will need two auxiliary arrays 
pParallelPivotPos and pProcPivotIter.  

The elements of the array pParallelPivotPos define the numbers of the matrix rows selected as the pivot 
ones at the iterations of the Gauss elimination. The back substitution iterations for finding the values of the 
unknown linear equation systems must be executed in exactly this order. The array pParallelPivotPos is global 
and any change in any of its processes requires executing the operation of broadcasting the data to the other 
program processes. 

The elements of the array pProcPivotIter determine the number of iterations for the Gaussian elimination. 
At these iterations the process rows were used as the pivot ones (i.e. the row i  of the process was chosen the 
pivot one at the iteration pProcPivotIter[i]). The original value of the array elements is set equal to -1 and , thus, 
this element value of the array pProcPivotIter[i] signifies that the row i  of the process is still to be processed. 
Besides, it is important to note that the iteration numbers stored in the elements of the array pProcPivotIter mean 
the numbers of the unknowns, which must be determined with the help of the corresponding equation rows. The 
array pProcPivotIter is local for each process. 

Let us declare the corresponding global variables: 

int *pParallelPivotPos; // Number of rows selected as the pivot ones 
int *pProcPivotIter;    // Number of iterations, at which the process 
                        // rows were used as the pivot ones 

Let us allocate the memory for storing these objects before the execution of the parallel Gauss method 
stages. After the termination of the back substitution we will deallocate the memory: 

// Function for the execution of the parallel Gauss algorithm 
 void ParallelResultCalculation(double* pProcRows, double* pProcVector,  
  double* pProcResult, int Size, int RowNum) { 
 
  // Memory allocation 
  pParallelPivotPos = new int [Size]; 
  pProcPivotIter = new int [RowNum]; 
  for (int i=0; i<RowNum; i++) 
    pProcPivotIter[i] = -1; 
 
  // Gaussian elimination 
  ParallelGaussianElimination (pProcRows, pProcVector, Size, RowNum); 
  // Back substitution 
  ParallelBackSubstitution (pProcRows, pProcVector, pProcResult, Size, 
    RowNum); 
 
  // Memory deallocation 
  delete [] pParallelPivotPos; 
  delete [] pProcPivotIter; 
}   

Later in this Exercise we will develop the Gaussian elimination. The back substitution of the Gauss method 
will be implemented in the next task of the lab. 

So the function ParallelGaussianElimination is intended for the execution of the Gaussian elimination in 
parallel. The matrix stripe of the linear equation system, which processes a given process (pProcRows), and a 
block of the right part vector pProcVector, the size Size and the number of rows in the stripe RowNum, have to 
be given to the function as arguments:  

// Function for the Gaussian elimination 
void ParallelGaussianElimination (double* pProcRows, double* pProcVector, 
  int Size, int RowNum); 

The purpose of the function is to reduce the matrix of the linear equation system to the upper triangle form 
using equivalent transformations.  

The number of the Gaussian elimination is equal to the order of the linear equation system. At each 
iteration the pivot row is selected with the help of the method of partial pivoting. As the matrix rows of the linear 
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equation systems are distributed among the subtasks, in order to find the maximum value the subtasks must 
exchange their elements of the column with the eliminated variable (at the iteration i of the Gaussian elimination 
the i-th unknown is eliminated). After gathering all the necessary data in each subtask it is possible to determine, 
which of the subtasks contains the pivot row and which value is the pivot element. 

Let us develop the procedure of choosing the pivot row in two stages. At the first stage the local pivot rows 
are selected on each process. For this purpose it is necessary to look through the rows to be processed (the row 
with the number i should be processed if the value of the element pProcPivotIter[i] is equal to -1), and select the 
row, which contains the maximum in absolute magnitude coefficient of eliminated unknown variable: 

// Function for the Gaussian elimination 
void ParallelGaussianElimination (double* pProcRows, double* pProcVector, 
  int Size, int RowNum) { 
  double MaxValue;   // Value of the pivot element of thе process 
  int    PivotPos;   // Position of the pivot row in the process stripe  
 
  // The iterations of the Gaussian elimination 
  for (int i=0; i<Size; i++) { 
    // Calculating the local pivot row 
    for (int j=0; j<RowNum; j++) { 
      if ((pProcPivotIter[j] == -1) &&  
         (MaxValue < fabs(pProcRows[j*Size+i]))) { 
        MaxValue = fabs(pProcRows[j*Size+i]); 
        PivotPos = j; 
      } 
    } 
  } 
} 

After calculating the pivot row on each process, we should choose the maximum element among the 
obtained pivot elements and determine, at which process it is located. The library MPI provides the function 
MPI_Allreduce for carrying out these operations. The function has the following heading: 

int MPI_Allreduce(void *sendbuf, void *recvbuf,int count,MPI_Datatype type, 
  MPI_Op op,MPI_Comm comm), 
where 
 - sendbuf – the memory buffer with the sent message, 
 - recvbuf – the memory buffer for the result message, 
 - count   - the number of elements in the messages, 
 - type    – the type of the message elements, 
 - op      - the operation to be executed with the data, 
 - comm    - the communicator, where the operation is executed. 

Let us reduce the data in order to determine the value of the pivot element and the process, where the pivot 
row is located: 

// Function for the Gaussian elimination 
void ParallelGaussianElimination (double* pProcRows, double* pProcVector, 
  int Size, int RowNum) { 
  double MaxValue;  // Value of the pivot element of the process 
  int PivotPos;     // Position of the pivot row in the process stripe  
 
  struct { double MaxValue; int ProcRank; } ProcPivot, Pivot; 
  // The Iterations of the Gaussian elimination 
  for (int i=0; i<Size; i++) { 
    <…> 
    // Finding the global pivot row 
    ProcPivot.MaxValue = MaxValue; 
    ProcPivot.ProcRank = ProcRank; 
    // Finding the pivot process  
    MPI_Allreduce(&ProcPivot, &Pivot, 1, MPI_DOUBLE_INT, MPI_MAXLOC,  
      MPI_COMM_WORLD); 
  } 
} 
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After the execution of the data reduction operation the value of the pivot element and the number of the 
process where the corresponding pivot row is located will be stored in the variable Pivot.  

Let us fill the corresponding element of the array pProcPivotIter on the process where the pivot row is 
located. Besides, let us place the number of the pivot row to the global array pPrallelPivotPos (we know the 
number of the process where the pivot row is located and the row number in the stripe, which is located on the 
process; this data allows us to determine the number of the row in the equation system using the values in the 
arrays pProcInd and pProcNum). 

  // Function for the Gaussian elimination 
void ParallelGaussianElimination (double* pProcRows, double* pProcVector, 
  int Size, int RowNum) { 
  double MaxValue;  // Value of the pivot element of the process 
  int PivotPos;     // Position of the pivot row in the process stripe  
 
  struct { double MaxValue; int ProcRank; } ProcPivot, Pivot; 
  // The Iterations of the Gaussian elimination stage 
  for (int i=0; i<Size; i++) { 
    <…> 
    MPI_Allreduce(&ProcPivot, &Pivot, 1, MPI_DOUBLE_INT, MPI_MAXLOC,  
      MPI_COMM_WORLD); 
    // Storing the number of the pivot row 
    if ( ProcRank == Pivot.ProcRank ){ 
      pProcPivotIter[PivotPos]= i; 
      pParallelPivotPos[i]= pProcInd[ProcRank] + PivotPos; 
    } 
    MPI_Bcast(&pParallelPivotPos[i], 1, MPI_INT, Pivot.ProcRank, 
      MPI_COMM_WORLD);        
  } 
} 

In order to carry out the transformation of the remaining matrix rows it is necessary to broadcast the pivot 
row and the corresponding element of the right part vector to all the processes. Let us have a buffer for storing 
the pivot row on the process, the rank of which was determined in the course of reduction (Pivot.ProcRank). Let 
us copy the row into the buffer and execute the broadcast: 

// Function for the Gaussian elimination 
void ParallelGaussianElimination (double* pProcRows, double* pProcVector, 
  int Size, int RowNum) { 
  double MaxValue;  // Value of the pivot element of the process 
  int PivotPos;     // Position of the pivot row in the process stripe  
 
  struct { double MaxValue; int ProcRank; } ProcPivot, Pivot; 
  double *pPivotRow;   // Pivot row of the current iteration 
  pPivotRow = new double [Size+1]; 
  // The iterations of the Gaussian elimination stage 
  for (int i=0; i<Size; i++) { 
    <…> 
    MPI_Bcast(&pParallelPivotPos[i], 1, MPI_INT, Pivot.ProcRank, 
      MPI_COMM_WORLD);  
    // Broadcasting the pivot row 
    if ( ProcRank == Pivot.ProcRank ){ 
      // Fill the pivot row 
      for (int j=0; j<Size; j++) { 
        pPivotRow[j] = pProcRows[PivotPos*Size + j]; 
      } 
      pPivotRow[Size] = pProcVector[PivotPos]; 
    } 
    MPI_Bcast(pPivotRow, Size+1, MPI_DOUBLE, Pivot.ProcRank, 
      MPI_COMM_WORLD); 
  } 
  delete [] pPivotRow; 
} 
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After obtaining the pivot row the subtasks carry out the subtraction of rows, thus, providing the elimination 
of the corresponding unknown. Let us implement the subtraction with the help of the function 
ParallelEliminateRows: 

// Fuction for the column elimination 
void ParallelEliminateColumns(double* pProcRows, double* pProcVector,  
  double* pPivotRow, int Size, int RowNum, int Iter) { 
  double PivotFactor;  
  for (int i=0; i<RowNum; i++) { 
    if (pProcPivotIter[i] == -1) { 
      PivotFactor = pProcRows[i*Size+Iter] / pPivotRow[Iter]; 
      for (int j=Iter; j<Size; j++) { 
        pProcRows[i*Size + j] -= PivotFactor* pPivotRow[j]; 
      } 
      pProcVector[i] -= PivotFactor * pPivotRow[Size]; 
    } 
  }     
} 

Let us call the function of subtraction from the function, which executes the parallel algorithm of the 
Gaussian elimination: 

// Function for the Gaussian elimination 
void ParallelGaussianElimination (double* pProcRows, double* pProcVector, 
  int Size, int RowNum) { 
  <…> 
  for (int i=0; i<Size; i++) { 
    <…> 
    MPI_Bcast(pPivotRow, Size+1, MPI_DOUBLE, Pivot.ProcRank, 
      MPI_COMM_WORLD); 
    // Column elimination 
    ParallelEliminateColumns(pProcRows, pProcVector, pPivotRow, Size,  
      RowNum, i); 
  } 
  delete [] pPivotRow; 
} 

Delete the call of the function testing the data distribution stage. Transform the call of the function, which 
executes the back substitution of the Gauss method  ParallelBackSubstitution, into the comment. To check the 
correctness of executing the Gaussian elimination, call the function TestDistribution immediately after 
ParallelResultCalculation: 

  // The execution of the parallel Gauss algorithm  
  ParallelResultCalculation (pProcRows, pProcVector, pProcResult Size, 
    RowNum); 
  TestDistribution(pMatrix, pVector, pProcRows, pProcVector, Size, RowNum); 

Compile and run the application. It should be noted that after the execution of the Gaussian elimination the 
matrix must be reduced to the upper triangle form. Run the application.  

Make sure that the developed functions are operated correctly (Figure 3.11). 



 
Figure 3.11. The Result of the Execution of the Gaussian elimination 

 Task 7 – Implement the Back Substitution  

In the course of the execution of the back substitution the processes carry out the calculations necessary for 
obtaining the values of the unknown variables. As soon as any process determines the value of its variable, this 
variable must be broadcast to all the processes so that they can substitute the obtained value of the new unknown 
variable and correct the values for the elements of the right part vector.  

The back substitution execution consists of Size iterations. At each iteration it is necessary to determine the 
row, which makes possible to calculate the value of the next result vector element. The row number is stored in 
the array pParallelPivotIter. Using the row number you should determine the number of process, where the row 
is stored, and the number of the row in the stripe pProcRows of the process. Let us develop the function 
FindBackPivotRow in order to carry out these operations:  

// Function for finding the pivot row of the back substitution 
void FindBackPivotRow(int RowIndex, int &IterProcRank, 
  int &IterPivotPos) { 
  for (int i=0; i<ProcNum-1; i++) { 
    if ((pProcInd[i]<=RowIndex) && (RowIndex<pProcInd[i+1])) 
      IterProcRank = i; 
  } 
  if (RowIndex >= pProcInd[ProcNum-1]) 
    IterProcRank = ProcNum-1; 
  IterPivotPos = RowIndex - pProcInd[IterProcRank]; 
} 

The number RowIndex of the row, for which we determine the location is given to the function as the 
argument. The function writes the rank of the process, where the row index is located, to the variable 
IterProcRank, and the number of the row in the buffer pProcRows - to the variable IterPivotPos.  

After the location of the row has been determined, the process, which contains the row, calculates the value 
of the corresponding result vector element and broadcasts it to all the processes. Then the processes carry out the 
transformation of their matrix rows: 
// Function for the back substitution 
void ParallelBackSubstitution (double* pProcRows, double* pProcVector, 
  double* pProcResult, int Size, int RowNum) { 
  int IterProcRank;    // Rank of the process with the current pivot row 
  int IterPivotPos;    // Position of the pivot row of the process 
  double IterResult;   // Calculated value of the current unknown 
  double val; 
 
  // The iterations of the back substitution 
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  for (int i=Size-1; i>=0; i--) { 
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    // Calculating the rank of the process, which holds the pivot row 
    FindBackPivotRow(pParallelPivotPos[i],Size,IterProcRank,IterPivotPos); 
     
    // Calculating the unknown 
    if (ProcRank == IterProcRank) { 
      IterResult = pProcVector[IterPivotPos] /   
                   pProcRows[IterPivotPos*Size+i]; 
      pProcResult[IterPivotPos] = IterResult; 
    } 
    // Broadcasting the value of the current unknown 
    MPI_Bcast(&IterResult, 1, MPI_DOUBLE, IterProcRank, MPI_COMM_WORLD); 
 
    // Updating the values of the vector 
    for (int j=0; j<RowNum; j++)  
      if ( pProcPivotIter[j] < i ) { 
        val = pProcRows[j*Size + i] * IterResult; 
        pProcVector[j]=pProcVector[j] - val; 
    } 
  } 
} 

Restore the call of the function, which executes the back substitution of the Gauss algorithm (remove the 
comm

 Task 8 – Gather the Result  

titution of the Gauss algorithm the result vector blocks are located on 
each 

ent signs in the call line). After the execution of the parallel Gauss algorithm, print the result vector blocks 
on each parallel process. Compile and run the application. Test the correctness of the program execution: if the 
function DummyDataInitialization is used to generate the initial data, all the result vector elements must be equal 
to 1. 

After the execution of the back subs
process. It is necessary to collect the result vector on the root process. Let us execute the result gather by 

means of the function MPI_Gatherv. The arrays necessary for calling the function were already determined in 
the course of executing the function DataDistribution. Thus, the function performing the gather has a very 
simple implementation: 

// Function for gathering the result vector 
void ResultCollection(double* pProcResult, double* pResult) { 
  //Gathering the result vector on the pivot processor 
  MPI_Gatherv(pProcResult, pProcNum[ProcRank], MPI_DOUBLE, pResult,  
    pProcNum, pProcInd, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
} 

Add the call of the function for gathering the result vector into the main function of the parallel application.  

// The execution of the parallel Gauss algorithm 
  ParallelResultCalculation(pProcRows, pProcVector, pProcResult,  
    Size, RowNum);  
 
  // Gathering the result vector 
  ResultCollection(pProcResult, pResult); 

It should be noticed, that the order of the unknowns in pResult vector is the same with the order of pivot 
rows selection, that was carried out during the Gaussian elimination stage. So, this order is stored in the 
pParallelPivotPos  array. This order should be taken into account while printing the result vector. Let’s develop 
the function PrintResultVector for formatted result vector output. 

// Function for formatted result vector output 
void PrintResultVector (double* pResult, int Size) { 
  int i; 
  for (i=0; i<Size; i++) 
    printf("%7.4f ", pResult[pParallelPivotPos[i]]); 
} 

Print the result vector on the root process with the help of PrintResultVector function: 
  // Gathering the result vector 
  ResultCollection(pProcResult, pResult); 
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  if (ProcRank == 0) { 
    printf (“Result vector \n”); 
    PrintResultVector(pResult, Size); 
  } 
 

Compile and run the application. Check the correctness of the algorithm execution: if the Gauss method is 
impl

 Task 9 – Test the Parallel Program Correctness  

ry to check the correctness of the 
prog

x and the right part 
vecto

emented correctly, all the result vector elements must be equal to 1 (if the function 
DummyDataInitialization is used to generate the initial data). 

After the function of the result collection is developed, it is necessa
ram execution. Let us develop the function TestResult for this purpose. It will perfom the multiplication of 

the linear system matrix by the vector of unknowns, that has been obtained by the means of Gauss method. 
Remember, that the order of the unknowns is stored in the pParallelPivotPos array. The result of the 
multiplication will be stored in the variable pRightPartVector. Then, the function will compare the vector of 
right parts pVector and the result of multiplication pRightPartVector element by element. In order to obtain each 
element of the result vector, it is necessary to execute serial multiplication and summation of real numbers. The 
order of executing these operations can influence the machine inaccuracy of computations and its value. That is 
why it is impossible to check of the vector elements are identical or not. Let us introduce the allowed divergence 
value of the serial and parallel algorithm results – the value Accuracy. The vectors are assumed to be the same if 
the corresponding elements differ by no more than the value of the allowed error Accuracy. 

The function TestResult must have access to the linear equation system matrix pMatri
r pVector. Consequently, it may be executed only on the root process: 

// Function for testing the result 
void TestResult(double* pMatrix, double* pVector, double* pResult,  
  int Size) { 
  /* Buffer for storing the vector, that is a result of multiplication  
     of the linear system matrix by the vector of unknowns */ 
  double* pRightPartVector;   
  // Flag, that shows wheather the right parts vectors are identical or not 
  int equal = 0;    
  double Accuracy = 1.e-6; // Comparison accuracy 
 
  if (ProcRank == 0) { 
    pRightPartVector = new double [Size]; 
 for (int i=0; i<Size; i++) { 
   pRightPartVector[i] = 0; 
   for (int j=0; j<Size; j++) { 
     pRightPartVector[i] += 
         pMatrix[i*Size+j]*pRe    sult[pParallelPivotPos[j]]; 
   } 
 } 
 
    for (int i=0; i<Size; i++) { 
   if (fabs(pRightPartVector[i]-pVector[i]) > Accuracy)) 
        equal = 1; 
    } 
    if (equal == 1)  
      printf("The result of the parallel Gauss algorithm is NOT correct." 
             "Check your code."); 
    else 
      printf("The result of the parallel Gauss algorithm is correct."); 
 delete [] pRightPartVector; 
  } 
} 

The results of the function execution are the print of the diagnostic message. It is possible to check the 
results of the parallel program execution using this message regardless of the linear equation system size in case 
of any values of the initial data.  
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Transform the calls of the functions into comment, using the debugging print, which have been previously 
used for checking the correctness of parallel application execution. Instead of the function 
DummyDataInitialization, which generates the linear equation system of a simple type, call the function 
RandomDataInitialization, which generates the system of equations with the lower triangle matrix, where 
nonzero elements are set by means of the random data generator. Compile and run the application. Set various 
amounts of the initial data. Make sure that the application is functioning properly. 

 Task 10 – Carry out the Computational Experiments  

Let us determine the parallel algorithm execution time. For this purpose add clocking to the program code. 
As the parallel algorithm includes the stage of data distribution, the computation of partial result block on each 
process and result gather, the timing should start immediately before the call of the function DataDistribution 
and stop right after the execution of the function ResultCollection: 

  <…> 
  Start = MPI_Wtime(); 
 
  // Distributing the initial data between the processes 
  DataDistribution(pMatrix, pProcRows, pVector, pProcVector, Size, RowNum); 
  // The execution of the parallel Gauss algorithm 
  ParallelResultCalculation(pProcRows, pProcVector, pProcResult,  
    Size, RowNum); 
  // Gathering the result vector 
  ResultCollection(pProcResult, pResult, Size, RowNum); 
   
  Finish = MPI_Wtime(); 
  Duration = Finish-Start; 
 
  // Testing the result 
  TestResult(pMatrix, pVector, pResult, Size); 
 
  // Printing the time spent by parallel Gauss algorithm 
  if (ProcRank == 0) 
    printf("\n Time of execution: %f\n", Duration); 

It is obvious that this way we will print the time spent on the execution of the calculations done by the root 
process (the process with the rank 0). The execution time for other processes may slightly differ from it. At the 
stage of developing the parallel algorithm we paid special attention to the equal load (balancing) of the 
processes. Therefore, now we have good reason to assert that the algorithm execution time for the other 
processes differs from that of the root process insignificantly.  

Add the marked code to the main function. Compile and run the application. Fill out the table: 
Table 3.3.  The Execution Time of the Parallel Gauss Algorithm for Solving the Linear Equation Systems 

and the Speed Up  

Parallel Algorithm 
2 processors 4 processors 8 processors Test 

Number 
System 

Size Serial Algorithm  
Time  Speed Up Time  Speed Up Time  Speed Up 

1 10        
2 100        
3 500        
4 1,000        
5 1,500        
6 2,000        
7 2,500        
8 3,000        

Give the serial algorithm execution time in the column “Serial algorithm”. The time must be measured in 
the course of testing the serial application in Exercise 3. In order to calculate the speed up, divide the serial 
program execution time by the parallel program execution time. Place the results in the corresponding column of 
the table.  

In order to estimate the theoretical execution time of the parallel algorithm implemented according to the 
computational scheme, which was given in Exercise 4, you might use the following expression:  
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(the detailed derivation of the formula is given in Section 9 “Parallel methods of solving the linear equation 
systems” of the training material). Here n is the linear equation system size, p is the number of processes, τ is the 
execution time for a basic computational operation (this value has been computed in the course of testing the 
serial algorithm), α is the latency, and β is the bandwidth of the data communication network. The values 
obtained in the course of performing the Compute Cluster Server Lab 2 "Carrying out Jobs under Microsoft 
Compute Cluster Server 2003" should be used as the latency and the bandwidth.  

Calculate the theoretical execution time for the parallel algorithm according to formula (3.6). Tabulate the 
results in the following way (Table 3.4): 

Table 3.4. The Comparison of the Experiment Parallel Execution Time to the Theoretically Calculated 
Execution Time  

2 processors 4 processors 8 processors Test 
number 

System 
Size  Model Experiment Model Experiment Model Experiment 

1 10       
2 100       
3 500       
4 1,000       
5 1,500       
6 2,000       
7 2,500       
8 3,000       

Discussions 

• How great is the difference between the execution time of the serial and the parallel algorithms? Why? 
• Was there any speed up obtained in case when the size of the equation system was  equal to 10 ? Why? 
• Are the theoretical and the experiment execution time values congruent? What may be the cause of 

incongruity? 
 

Exercises  

1. Study the conjugate gradient method of solving the linear equation systems. Develop the serial and the 
parallel variants of the method. 

 Appendix 1. The Program Code of the Serial Gauss Algorithm for Solving 
the Linear Equation Systems  

#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <time.h> 
#include <math.h> 
 
int* pSerialPivotPos;  // Number of pivot rows selected at the iterations 
int* pSerialPivotIter; // Iterations, at which the rows were pivots 
 
// Function for simple initialization of the matrix and the vector elements 
void DummyDataInitialization (double* pMatrix, double* pVector, int Size) { 
  int i, j;  // Loop variables 
 
  for (i=0; i<Size; i++) { 
    pVector[i] = i+1; 
    for (j=0; j<Size; j++) { 
      if (j <= i) 
        pMatrix[i*Size+j] = 1; 
      else 
        pMatrix[i*Size+j] = 0; 
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    } 
  } 
} 
 
// Function for random initialization of the matrix and the vector elements 
void RandomDataInitialization (double* pMatrix,double* pVector,int Size) { 
  int i, j;  // Loop variables 
  srand(unsigned(clock())); 
  for (i=0; i<Size; i++) { 
    pVector[i] = rand()/double(1000); 
    for (j=0; j<Size; j++) { 
     if (j <= i) 
        pMatrix[i*Size+j] = rand()/double(1000); 
       else 
        pMatrix[i*Size+j] = 0; 
    } 
  } 
} 
 
// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pMatrix, double* &pVector,  
    double* &pResult, int &Size) { 
  // Setting the size of the matrix and the vector 
  do { 
    printf("\nEnter the size of the matrix and the vector: "); 
    scanf("%d", &Size); 
    printf("\nChosen size = %d \n", Size); 
 
    if (Size <= 0) 
      printf("\nSize of objects must be greater than 0!\n"); 
  } while (Size <= 0); 
 
  // Memory allocation  
  pMatrix = new double [Size*Size]; 
  pVector = new double [Size]; 
  pResult = new double [Size]; 
 
  // Initialization of the matrix and the vector elements 
  DummyDataInitialization(pMatrix, pVector, Size); 
  //RandomDataInitialization(pMatrix, pVector, Size); 
} 
 
// Function for formatted matrix output 
void PrintMatrix (double* pMatrix, int RowCount, int ColCount) { 
  int i, j; // Loop variables 
  for (i=0; i<RowCount; i++) { 
    for (j=0; j<ColCount; j++) 
      printf("%7.4f ", pMatrix[i*RowCount+j]); 
    printf("\n"); 
  } 
} 
 
// Function for formatted vector output 
void PrintVector (double* pVector, int Size) { 
  int i; 
  for (i=0; i<Size; i++) 
    printf("%7.4f ", pVector[i]); 
} 
 
// Function for finding the pivot row 
int FindPivotRow(double* pMatrix, int Size, int Iter) { 
  int PivotRow = -1; // Index of the pivot row 
  int MaxValue =  0; // Value of the pivot element 
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  int i;             // Loop variable 
  
  // Choose the row, that stores the maximum element 
  for (i=0; i<Size; i++) { 
    if ((pSerialPivotIter[i] == -1) &&  
       (fabs(pMatrix[i*Size+Iter]) > MaxValue)) { 
      PivotRow = i; 
      MaxValue = fabs(pMatrix[i*Size+Iter]); 
    } 
  } 
  return PivotRow; 
} 
 
// Function for the column elimination 
void SerialColumnElimination (double* pMatrix, double* pVector, int Pivot,  
  int Iter, int Size) { 
  double PivotValue, PivotFactor;  
  PivotValue = pMatrix[Pivot*Size+Iter]; 
  for (int i=0; i<Size; i++) { 
    if (pSerialPivotIter[i] == -1) { 
      PivotFactor = pMatrix[i*Size+Iter] / PivotValue; 
      for (int j=Iter; j<Size; j++) { 
        pMatrix[i*Size + j] -= PivotFactor * pMatrix[Pivot*Size+j]; 
      } 
      pVector[i] -= PivotFactor * pVector[Pivot]; 
    } 
  }   
} 
 
// Function for the Gaussian elimination 
void SerialGaussianElimination(double* pMatrix,double* pVector,int Size) { 
  int Iter;       // Number of the iteration of the Gaussian elimination 
  int PivotRow;   // Number of the current pivot row 
  for (Iter=0; Iter<Size; Iter++) { 
    // Finding the pivot row 
    PivotRow = FindPivotRow(pMatrix, Size, Iter); 
    pSerialPivotPos[Iter] = PivotRow; 
    pSerialPivotIter[PivotRow] = Iter; 
    SerialColumnElimination(pMatrix, pVector, PivotRow, Iter, Size); 
  } 
} 
 
// Function for the back substution 
void SerialBackSubstitution (double* pMatrix, double* pVector,  
  double* pResult, int Size) { 
  int RowIndex, Row; 
  for (int i=Size-1; i>=0; i--) { 
    RowIndex = pSerialPivotPos[i]; 
    pResult[i] = pVector[RowIndex]/pMatrix[Size*RowIndex+i]; 
    for (int j=0; j<i; j++) { 
      Row = pSerialPivotPos[j]; 
      pVector[j] -= pMatrix[Row*Size+i]*pResult[i]; 
      pMatrix[Row*Size+i] = 0; 
    } 
  } 
} 
 
// Function for the execution of the Gauss algorithm 
void SerialResultCalculation(double* pMatrix, double* pVector,  
  double* pResult, int Size) { 
 
  // Memory allocation 
  pSerialPivotPos  = new int [Size]; 
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  pSerialPivotIter = new int [Size]; 
  for (int i=0; i<Size; i++) { 
    pSerialPivotIter[i] = -1; 
  } 
  // Gaussian elimination 
  SerialGaussianElimination (pMatrix, pVector, Size); 
  // Back substitution 
  SerialBackSubstitution (pMatrix, pVector, pResult, Size);  
 
  // Memory deallocation 
  delete [] pSerialPivotPos; 
  delete [] pSerialPivotIter; 
} 
 
// Function for computational process termination 
void ProcessTermination (double* pMatrix,double* pVector,double* pResult) { 
  delete [] pMatrix; 
  delete [] pVector; 
  delete [] pResult; 
} 
 
void main() { 
  double* pMatrix;  // Matrix of the linear system 
  double* pVector;  // Right parts of the linear system 
  double* pResult;  // Result vector 
  int Size;         // Sizes of the initial matrix and the vector 
  time_t start, finish; 
  double duration; 
 
  printf("Serial Gauss algorithm for solving linear systems\n"); 
  // Memory allocation and definition of objects' elements 
  ProcessInitialization(pMatrix, pVector, pResult, Size); 
 
  // The matrix and the vector output 
  printf ("Initial Matrix \n");  
  PrintMatrix(pMatrix, Size, Size); 
  printf("Initial Vector \n"); 
  PrintVector(pVector, Size); 
 
  // Execution of the Gauss algorithm 
  start = clock(); 
  SerialResultCalculation(pMatrix, pVector, pResult, Size); 
  finish = clock(); 
  duration = (finish-start)/double(CLOCKS_PER_SEC); 
 
  // Printing the result vector 
  printf ("\n Result Vector: \n"); 
  PrintVector(pResult, Size); 
 
  // Printing the execution time of the Gauss method 
  printf("\n Time of execution: %f\n", duration); 
 
  // Computational process termination 
  ProcessTermination(pMatrix, pVector, pResult); 
  getch(); 
} 

 Appendix 2.The Program Code of the Parallel Gauss Algorithm for Solving 
the Linear Equation Systems  

#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 
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#include <time.h> 
#include <math.h> 
#include <mpi.h> 
 
 
int ProcNum;            // Number of the available processes  
int ProcRank;           // Rank of the current process 
int *pParallelPivotPos; // Number of rows selected as the pivot ones 
int *pProcPivotIter;    // Number of iterations, at which the processor 
                        // rows were used as the pivot ones 
int *pProcInd; // Number of the first row located on the processes 
int *pProcNum; // Number of the linear system rows located on the processes 
 
// Function for simple definition of matrix and vector elements 
void DummyDataInitialization (double* pMatrix, double* pVector, int Size) { 
  int i, j;  // Loop variables 
 
  for (i=0; i<Size; i++) { 
    pVector[i] = i+1; 
    for (j=0; j<Size; j++) { 
      if (j <= i) 
        pMatrix[i*Size+j] = 1; 
      else 
        pMatrix[i*Size+j] = 0; 
    } 
  } 
} 
 
// Function for random definition of matrix and vector elements 
void RandomDataInitialization (double* pMatrix,double* pVector,int Size) { 
  int i, j;  // Loop variables 
  srand(unsigned(clock())); 
  for (i=0; i<Size; i++) { 
    pVector[i] = rand()/double(1000); 
    for (j=0; j<Size; j++) { 
      if (j <= i) 
        pMatrix[i*Size+j] = rand()/double(1000); 
      else 
        pMatrix[i*Size+j] = 0; 
    } 
  } 
} 
 
// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pMatrix, double* &pVector,  
  double* &pResult, double* &pProcRows, double* &pProcVector,  
  double* &pProcResult, int &Size, int &RowNum) { 
 
  int RestRows; // Number of rows, that haven't been distributed yet 
  int i;        // Loop variable 
 
  if (ProcRank == 0) { 
    do { 
      printf("\nEnter the size of the matrix and the vector: "); 
      scanf("%d", &Size); 
      if (Size < ProcNum) { 
        printf("Size must be greater than number of processes! \n"); 
      } 
    } 
    while (Size < ProcNum); 
  } 
  MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD); 
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  RestRows = Size; 
  for (i=0; i<ProcRank; i++)  
    RestRows = RestRows-RestRows/(ProcNum-i); 
  RowNum = RestRows/(ProcNum-ProcRank); 
 
  pProcRows = new double [RowNum*Size]; 
  pProcVector = new double [RowNum]; 
  pProcResult = new double [RowNum]; 
 
  pParallelPivotPos = new int [Size];       
  pProcPivotIter = new int [RowNum];  
   
  pProcInd = new int [ProcNum]; 
  pProcNum = new int [ProcNum]; 
 
  for (int i=0; i<RowNum; i++) 
    pProcPivotIter[i] = -1; 
 
  if (ProcRank == 0) { 
    pMatrix = new double [Size*Size]; 
    pVector = new double [Size]; 
    pResult = new double [Size]; 
    DummyDataInitialization (pMatrix, pVector, Size); 
    // RandomDataInitialization(pMatrix, pVector, Size); 
  } 
} 
 
// Function for the data distribution among the processes 
void DataDistribution(double* pMatrix, double* pProcRows, double* pVector, 
  double* pProcVector, int Size, int RowNum) { 
 
  int *pSendNum;     // Number of the elements sent to the process 
  int *pSendInd;     // Index of the first data element sent to the process 
  int RestRows=Size; // Number of rows, that have not been distributed yet 
  int i;             // Loop variable 
 
  // Alloc memory for temporary objects 
  pSendInd = new int [ProcNum]; 
  pSendNum = new int [ProcNum]; 
 
  // Define the disposition of the matrix rows for the current process 
  RowNum = (Size/ProcNum); 
  pSendNum[0] = RowNum*Size; 
  pSendInd[0] = 0; 
  for (i=1; i<ProcNum; i++) { 
    RestRows -= RowNum; 
    RowNum = RestRows/(ProcNum-i); 
    pSendNum[i] = RowNum*Size; 
    pSendInd[i] = pSendInd[i-1]+pSendNum[i-1]; 
  } 
 
  // Scatter the rows 
  MPI_Scatterv(pMatrix, pSendNum, pSendInd, MPI_DOUBLE, pProcRows,  
    pSendNum[ProcRank], MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 
  // Define the disposition of the matrix rows for current process 
  RestRows = Size; 
  pProcInd[0] = 0; 
  pProcNum[0] = Size/ProcNum; 
  for (i=1; i<ProcNum; i++) { 
    RestRows -= pProcNum[i-1]; 
    pProcNum[i] = RestRows/(ProcNum-i); 
    pProcInd[i] = pProcInd[i-1]+pProcNum[i-1]; 



36 

  } 
 
  MPI_Scatterv(pVector, pProcNum, pProcInd, MPI_DOUBLE, pProcVector,  
    pProcNum[ProcRank], MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 
  // Free the memory 
  delete [] pSendNum; 
  delete [] pSendInd;  
} 
 
// Function for gathering the result vector 
void ResultCollection(double* pProcResult, double* pResult) { 
  // Gather the whole result vector on every processor 
  MPI_Gatherv(pProcResult, pProcNum[ProcRank], MPI_DOUBLE, pResult,  
    pProcNum, pProcInd, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
} 
 
// Function for formatted matrix output 
void PrintMatrix (double* pMatrix, int RowCount, int ColCount) { 
  int i, j; // Loop variables 
  for (i=0; i<RowCount; i++) { 
    for (j=0; j<ColCount; j++) 
      printf("%7.4f ", pMatrix[i*ColCount+j]); 
    printf("\n"); 
  } 
} 
 
// Function for formatted vector output 
void PrintVector (double* pVector, int Size) { 
  int i; 
  for (i=0; i<Size; i++) 
    printf("%7.4f ", pVector[i]); 
} 
 
// Function for formatted vector output 
void PrintResultVector (double* pResult, int Size) { 
  int i; 
  for (i=0; i<Size; i++) 
    printf("%7.4f ", pResult[pParallelPivotPos[i]]); 
} 
 
// Fuction for the column elimination 
void ParallelEliminateColumns(double* pProcRows, double* pProcVector, 
  double* pPivotRow, int Size, int RowNum, int Iter) { 
  double multiplier;  
  for (int i=0; i<RowNum; i++) { 
    if (pProcPivotIter[i] == -1) { 
      multiplier = pProcRows[i*Size+Iter] / pPivotRow[Iter]; 
      for (int j=Iter; j<Size; j++) { 
        pProcRows[i*Size + j] -= pPivotRow[j]*multiplier; 
      } 
      pProcVector[i] -= pPivotRow[Size]*multiplier; 
    } 
  }     
} 
 
// Function for the Gaussian elimination 
void ParallelGaussianElimination (double* pProcRows, double* pProcVector, 
  int Size, int RowNum) { 
  double MaxValue;   // Value of the pivot element of thе process 
  int    PivotPos;   // Position of the pivot row in the process stripe  
 
  // Structure for the pivot row selection 
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  struct { double MaxValue; int ProcRank; } ProcPivot, Pivot; 
 
  // pPivotRow is used for storing the pivot row and the corresponding  
  // element of the vector b 
  pPivotRow = new double [Size+1]; 
 
  // The iterations of the Gaussian elimination stage 
  for (int i=0; i<Size; i++) { 
   
    // Calculating the local pivot row 
    double MaxValue = 0; 
    for (int j=0; j<RowNum; j++) { 
      if ((pProcPivotIter[j] == -1) &&  
        (MaxValue < fabs(pProcRows[j*Size+i]))) { 
        MaxValue = fabs(pProcRows[j*Size+i]); 
        PivotPos = j; 
      } 
    } 
    ProcPivot.MaxValue = MaxValue; 
    ProcPivot.ProcRank = ProcRank; 
 
    // Finding the pivot process  
    // (process with the maximum value of MaxValue) 
    MPI_Allreduce(&ProcPivot, &Pivot, 1, MPI_DOUBLE_INT, MPI_MAXLOC,  
                  MPI_COMM_WORLD); 
 
    // Broadcasting the pivot row 
    if ( ProcRank == Pivot.ProcRank ){ 
      pProcPivotIter[PivotPos]= i; //iteration number 
      pParallelPivotPos[i]= pProcInd[ProcRank] + PivotPos; 
    } 
    MPI_Bcast(&pParallelPivotPos[i], 1, MPI_INT, Pivot.ProcRank, 
      MPI_COMM_WORLD);  
       
    if ( ProcRank == Pivot.ProcRank ){ 
      // Fill the pivot row 
      for (int j=0; j<Size; j++) { 
        pPivotRow[j] = pProcRows[PivotPos*Size + j]; 
      } 
      pPivotRow[Size] = pProcVector[PivotPos]; 
    } 
    MPI_Bcast(pPivotRow, Size+1, MPI_DOUBLE, Pivot.ProcRank, 
      MPI_COMM_WORLD); 
    ParallelEliminateColumns(pProcRows, pProcVector, pPivotRow,  
      Size, RowNum, i); 
  } 
} 
 
// Function for finding the pivot row of the back substitution 
void FindBackPivotRow(int RowIndex, int &IterProcRank, 
  int &IterPivotPos) { 
  for (int i=0; i<ProcNum-1; i++) { 
    if ((pProcInd[i]<=RowIndex) && (RowIndex<pProcInd[i+1])) 
      IterProcRank = i; 
  } 
  if (RowIndex >= pProcInd[ProcNum-1]) 
    IterProcRank = ProcNum-1; 
  IterPivotPos = RowIndex - pProcInd[IterProcRank]; 
} 
 
// Function for the back substitution 
void ParallelBackSubstitution (double* pProcRows, double* pProcVector,  
  double* pProcResult, int Size, int RowNum) { 
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  int IterProcRank;   // Rank of the process with the current pivot row 
  int IterPivotPos;   // Position of the pivot row of the process 
  double IterResult;  // Calculated value of the current unknown 
  double val; 
 
  // Iterations of the back substitution stage 
  for (int i=Size-1; i>=0; i--) { 
 
    // Calculating the rank of the process, which holds the pivot row 
    FindBackPivotRow (pParallelPivotPos[i], IterProcRank, IterPivotPos); 
     
    // Calculating the unknown 
    if (ProcRank == IterProcRank) { 
      IterResult = 
        pProcVector[IterPivotPos]/pProcRows[IterPivotPos*Size+i]; 
   pProcResult[IterPivotPos] = IterResult;       
    } 
    // Broadcasting the value of the current unknown 
    MPI_Bcast(&IterResult, 1, MPI_DOUBLE, IterProcRank, MPI_COMM_WORLD); 
 
    // Updating the values of the vector b 
    for (int j=0; j<RowNum; j++)  
      if ( pProcPivotIter[j] < i ) { 
        val = pProcRows[j*Size + i] * IterResult; 
        pProcVector[j]=pProcVector[j] - val; 
    } 
  } 
} 
 
// Function for testing the data distribution 
void TestDistribution(double* pMatrix, double* pVector, double* pProcRows,  
  double* pProcVector, int Size, int RowNum) { 
 
  if (ProcRank == 0) { 
    printf("Initial Matrix: \n"); 
    PrintMatrix(pMatrix, Size, Size); 
    printf("Initial Vector: \n"); 
    PrintVector(pVector, Size); 
  } 
  MPI_Barrier(MPI_COMM_WORLD); 
  for (int i=0; i<ProcNum; i++) { 
    if (ProcRank == i) { 
      printf("\nProcRank = %d \n", ProcRank); 
      printf(" Matrix Stripe:\n"); 
      PrintMatrix(pProcRows, RowNum, Size); 
      printf(" Vector: \n"); 
      PrintVector(pProcVector, RowNum); 
    } 
    MPI_Barrier(MPI_COMM_WORLD); 
  } 
} 
 
// Function for the execution of the parallel Gauss algorithm 
void ParallelResultCalculation(double* pProcRows, double* pProcVector,  
  double* pProcResult, int Size, int RowNum) { 
  ParallelGaussianElimination (pProcRows, pProcVector, Size, RowNum); 
  ParallelBackSubstitution (pProcRows, pProcVector, pProcResult,  
    Size, RowNum); 
}   
 
// Function for computational process termination 
void ProcessTermination (double* pMatrix, double* pVector, double* pResult, 
  double* pProcRows, double* pProcVector, double* pProcResult) { 
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  if (ProcRank == 0) { 
    delete [] pMatrix; 
    delete [] pVector; 
    delete [] pResult; 
  } 
  delete [] pProcRows; 
  delete [] pProcVector; 
  delete [] pProcResult; 
 
  delete [] pParallelPivotPos; 
  delete [] pProcPivotIter; 
 
  delete [] pProcInd; 
  delete [] pProcNum; 
} 
 
void TestResult(double* pMatrix, double* pVector, double* pResult,  
  int Size) { 
  /* Buffer for storing the vector, that is a result of multiplication  
     of the linear system matrix by the vector of unknowns */ 
  double* pRightPartVector;   
  // Flag, that shows wheather the right parts vectors are identical or not 
  int equal = 0;    
  double Accuracy = 1.e-6; // Comparison accuracy 
 
  if (ProcRank == 0) { 
    pRightPartVector = new double [Size]; 
 for (int i=0; i<Size; i++) { 
   pRightPartVector[i] = 0; 
   for (int j=0; j<Size; j++) { 
     pRightPartVector[i] += 
            pMatrix[i*Size+j]*pResult[pParallelPivotPos[j]]; 
   } 
 } 
 
    for (int i=0; i<Size; i++) { 
   if (fabs(pRightPartVector[i]-pVector[i]) > Accuracy)) 
        equal = 1; 
    } 
    if (equal == 1)  
      printf("The result of the parallel Gauss algorithm is NOT correct."      
             "Check your code."); 
    else 
      printf("The result of the parallel Gauss algorithm is correct."); 
 delete [] pRightPartVector; 
  } 
} 
 
void main(int argc, char* argv[]) { 
  double* pMatrix;        // Matrix of the linear system 
  double* pVector;        // Right parts of the linear system 
  double* pResult;        // Result vector 
  double *pProcRows;      // Rows of the matrix A  
  double *pProcVector;    // Elements of the vector b 
  double *pProcResult;    // Elements of the vector x 
  int     Size;           // Sizes of the matrix and the vectors 
  int     RowNum;         // Number of the matrix rows  
  double start, finish, duration; 
 
  setvbuf(stdout, 0, _IONBF, 0); 
 
  MPI_Init ( &argc, &argv ); 
  MPI_Comm_rank ( MPI_COMM_WORLD, &ProcRank ); 
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  MPI_Comm_size ( MPI_COMM_WORLD, &ProcNum ); 
   
  if (ProcRank == 0) 
    printf("Parallel Gauss algorithm for solving linear systems\n"); 
 
  // Memory allocation and data initialization 
  ProcessInitialization(pMatrix, pVector, pResult,  
    pProcRows, pProcVector, pProcResult, Size, RowNum); 
  // The execution of the parallel Gauss algorithm 
  start = MPI_Wtime(); 
 
  DataDistribution(pMatrix, pProcRows, pVector, pProcVector, Size, RowNum); 
   
  ParallelResultCalculation(pProcRows, pProcVector, pProcResult,  
    Size, RowNum); 
  TestDistribution(pMatrix, pVector, pProcRows, pProcVector, Size, RowNum); 
 
  ResultCollection(pProcResult, pResult); 
   
  finish = MPI_Wtime(); 
  duration = finish-start; 
 
  if (ProcRank == 0) { 
    // Printing the result vector 
    printf ("\n Result Vector: \n"); 
    PrintVector(pResult, Size); 
  } 
  TestResult(pMatrix, pVector, pResult, Size); 
 
  // Printing the time spent by the Gauss algorithm 
  if (ProcRank == 0) 
    printf("\n Time of execution: %f\n", duration); 
 
  // Computational process termination 
  ProcessTermination(pMatrix, pVector, pResult, pProcRows, pProcVector,  
    pProcResult); 
  MPI_Finalize(); 
} 
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