
1

 Learning Lab 3: Parallel Methods of Solving the Linear Equation
Systems

Lab Objective ... 1
Exercise 1 – State the Problem of Solving the Linear Equation Systems 2
Exercise 2 - Studying the Gauss Algorithm for Solving the Linear Equation Systems 2

Gaussian Elimination.. 3
Back Substitution.. 4

Exercise 3 – The Realization of the Sequential Gauss Algorithm ... 4
Task 1 – Open the Project SerialGauss ... 5
Task 2 –Input the Matrix and Vector Sizes... 5
Task 3 – Input the Initial Data... 6
Task 4 –Terminate the Program Execution.. 8
Task 5 – Implement the Gaussian Elimination ... 9
Task 6 – Implement the Back Substitution ... 12
Task 7 – Carry out Computational Experiments... 13

Exercise 4 –Developing the Parallel Gauss Algorithm... 14
Subtask Definition... 14
Analysis of Information Dependencies ... 15
Scaling and Subtask Distribution among the Processors... 15

Exercise 5 – Coding the Parallel Gauss Program for Solving the Linear Equation Systems 15
Task 1 – Open the Project ParallelGauss .. 15
Task 2 – Input the Initial Data... 16
Task 3 – Terminate the Parallel Program... 19
Task 4 – Distribute the Data among the Processes ... 19
Task 5 – Implement the Gaussian Elimination ... 21
Task 7 – Implement the Back Substitution ... 26
Task 8 – Gather the Result... 27
Task 9 – Test the Parallel Program Correctness ... 28
Task 10 – Carry out the Computational Experiments... 29

Discussions .. 30
Exercises.. 30
Appendix 1. The Program Code of the Serial Gauss Algorithm for Solving the Linear Equation

Systems ... 30
Appendix 2.The Program Code of the Parallel Gauss Algorithm for Solving the Linear Equation

Systems ... 33

Linear equation systems appear in the course of solving a number of applied problems, which are described

by differential or integral equations or by systems of non-linear (transcendent) equations. They may appear also
in the problems of mathematical programming, statistic data processing, function approximation, or in
discretization of boundary differential problems by methods of finite differences or of finite elements, etc.

This lab discusses one of the direct methods of solving linear equation systems, i.e. the Gauss method and
its parallel generalization.

 Lab Objective

The objective of this lab is to develop a parallel program for solving the linear equation systems by means
of the Gauss method. The lab assignments include:

• Exercise 1 – Stating the problem of solving the linear equation systems.
• Exercise 2 – Studying the Gauss algorithm for solving the linear equation systems.
• Exercise 3 – The Realization of the Sequential Gauss Algorithm.

• Exercise 4 – Developing the parallel Gauss algorithm.
• Exercise 5 – Coding the parallel program for solving the linear equation systems.
Estimated time to complete this lab: 90 minutes.
The lab students are assumed to be familiar with the related sections of the training material: Section 4

“Parallel programming with MPI”, Section 6 “Principles of parallel method development” and Section 9
“Parallel methods of solving the linear equation systems” of the training material. Besides, the following labs are
assumed to have been done: the preliminary lab “Parallel programming with MPI”, Lab 1 “Parallel algorithms of
matrix-vector multiplication” and Lab 2 “Parallel algorithms of matrix multiplication”.

 Exercise 1 – State the Problem of Solving the Linear Equation Systems

Linear equat ion with n independent unknowns x0, x1, …, xn-1 may be described by means of the
expression

bxaxaxa nn =+++ −− 111100 ... (3.1)

where values a0, a1, …, an-1 and b are constant.
Set of n linear equations

111,111,100,1

111,111,100,1

011,011,000,0

...
...

...
...

−−−−−−

−−

−−

=+++

=+++
=+++

nnnnnn

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa

 (3.2)

is termed a system of linear equations or a linear system. In brief (matrix) form this system may be presented as
bAx = ,

where A=(ai,j) is a real matrix of size n×n, and vectors b and x are composed of n elements.
The problem of solving a system of linear equation for the given matrix A and the vector b is considered to

be the problem of searching the value of unknown vector x whereby all the system equations hold.

 Exercise 2 - Studying the Gauss Algorithm for Solving the Linear Equation
Systems

The Gauss method is a well-known direct algorithm of solving systems of linear equations, the coefficient
matrices of which are dense. If a system of linear equations is nondegenerate, then the Gauss method guarantees
solving the problem with the error determined by the accuracy of computations. The main concept of the method
is a modification of matrix A by means of equivalent transformations (which do not change the solution of
system (3.2)) to a triangle form. After that the values of the desired unknown variables may be obtained directly
in an explicit form.

The Exercise gives the general description of the Gauss method, which is sufficient for its initial
understanding and which allows to consider possible methods of parallel computations in solving the linear
equation systems.

The Gauss method is based on the possibility to carry out the transformation of linear equations, which do
not change the solution of the system under consideration (such transformations are referred to as equivalent).
They include the following transformations:

• the multiplication of any equation by a nonzero constant,
• the permutation of equations,
• the addition of any system equation to other equation.
The Gauss method includes sequential execution of two stages. At the first stage (the Gaussian elimination

stage) the initial system of linear equations is reduced to the upper triangle form with the use of sequential
elimination of unknowns.

cxU = ,

where the coefficient matrix of the obtained system looks as follows:

2

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−−

−

−

1,1

1,11,1

1,01,00,0

...00

...

...0

...

nn

n

n

u

uu
uuu

U .

At the back substitution (the second stage of the algorithm) the values of unknown variables are determined. The
value of the variable xn - 1 may be calculated from the last equation of the transformed system. After that it
becomes possible to find the value of the variable xn - 2 from the second to last equation etc.

 Gaussian Elimination

The Gaussian elimination consists in sequential elimination of the unknowns in the equations of the linear
equation system being solved. At iteration i , 0≤ i<n-1, of the method the variable x i is eliminated for all the
equations with numbers k greater than i (i.e. i< k≤n-1,). In order to do so the row i multiplied by the constant
(a /ak i i i) is subtracted from these equations so that the resulting coefficient of unknown x i in the rows appears
zero. All the necessary computations may be described by the following expressions:

10,1,1
,)/('
,)/('

−<≤−≤<−≤≤
⋅−=
⋅−=

ninkinji
baabb
aaaaa

iiikikk

ijiikikjkj (3.3)

(it should be noted that similar computations are performed over the vector b too).
Let us demonstrate the Gaussian elimination using the following system of linear equations as an example:

2664
18572
123

210

210

210

=++
=++
=++

xxx
xxx
xxx

.

At the first iteration the unknown x0 is eliminated in the second and the third rows. For this the first row
multiplied correspondingly by 2 and by 1 is subtracted from these rows. After these transformations the system
looks as follows:

254
16
123

21

21

210

=+
=+
=++

xx
xx
xxx

.

As a result, we need to perform the last iteration and eliminate the unknown x1 in the third equation. For this it is
sufficient to subtract the second row. In the final form the system looks as follows:

93
16
123

2

21

210

=
=+
=++

x
xx
xxx

.

Figure 3.1 shows the general scheme of the state of data at i-th iteration of the Gaussian elimination. All the
coefficients of the unknowns, which are located lower than the main diagonal and to the left of column i are
already zero. At i-th iteration of the Gaussian elimination the coefficients of column i located lower than the
main diagonal are set to zero. It is done by means of subtracting the row i multiplied by the adequate nonzero
constant. After accomplishment of (n-1) of such iterations the matrix, which defines the system of linear
equations is transformed in the upper triangle form.

The coefficients already
set to 0

The coefficient which will
not change

The leading row

The coefficients, which will
change

Figure 3.1. The Iteration of the Gaussian elimination

3

During the execution of the Gaussian elimination the row, which is used for eliminating unknowns is
termed the pivot one, and the diagonal element of the pivot row is termed the pivot element. As it can be seen it
is possible to perform computations only if the pivot element is a nonzero value. Moreover, if the pivot element
ai,i has a small value, then the division and the multiplication of rows by this element may lead to accumulation
of the computational errors and the computational instability of the algorithm.

A possible way to avoid this problem may consist in the following: at each next iteration of the Gaussian
elimination it is necessary to determine the coefficient with the maximum absolute magnitude in the column,
which corresponds to the eliminated variable, i.e.

ki
nki

ay
1

max
−≤≤

= ,

and choose the row, which contains this coefficient, as the pivot one (this scheme of choosing the pivot value is
termed the method of partial pivoting).

The computational complexity of the Gaussian elimination with the method of partial pivoting is of order
O(n3).

 Back Substitution

After the matrix of the coefficients has been reduced to the upper triangle form, it becomes possible to find
the values of the unknowns. The value of the variable xn-1 may be calculated from the last equation of the
transformed system. After that it is possible to determine the variable xn-2 from the second to last equation and so
on. In the general form the computations performed during the back substitution may be presented by means of
the following relations:

0,...,3,2,/)(

,/
1

1

1,111

−−=−=

=

∑
−

+=

−−−−

nniaxabx

abx
n

ij
iijijii

nnnn

. (3.4)

It may be explained as previously using the example of the linear equation systems discussed in the
previous subsection:

93
16
123

2

21

210

=
=+
=++

x
xx
xxx

.

From the last equation of the system, the value of the variable x2 is 3. As a result, it becomes possible to solve
the second equation and to find the value of the unknown x1=13, i.е.

3
13
123

2

1

210

=
=
=++

x
x

xxx
.

The value of the unknown x0, which is equal to -44, is determined at the last iteration of the back substitution.
With regard to the following parallel execution, it is possible to note that the accounting of the obtained

unknown values may be performed in all the system equations at once (these operations may be performed in the
equations simultaneously and independently). Thus, in the example under consideration the system after the
determination of the value of the unknown x2 may be reduced to the following form:

3
13

53

2

1

10

=
=

−=+

x
x
xx

The computational complexity of the back substitution in the Gauss algorithm is O(n2).

 Exercise 3 – The Realization of the Sequential Gauss Algorithm

In order to do the Exercise you should implement the Gauss algorithm of solving the linear equation
systems. The initial variant of the program to be developed is given in the project Serial Gauss, which contains a
certain part of the initial code and the necessary project parameters. While doing this Exercise it is necessary to
add the input operations of initial matrix size, initial data setting, and the operations of the Gauss algorithm
implementation and result output to the given variant of the program.

4

 Task 1 – Open the Project SerialGauss

Open the project SerialGauss using the following steps:
• Start the application Microsoft Visual Studio 2005, if it has not been started yet,
• Execute the command Open→Project/Solution in the menu File,
• Choose the folder с:\MsLabs\SerialGauss in the dialog window Open Project
• Make the double click on the file SerialGauss.sln or execute the command Open after selecting the

file.
After the project has been open in the window Solution Explorer (Ctrl+Alt+L), make the double click on

the file of the initial code SerialGauss.cpp, as it is shown in Figure 3.2. After that, the code, which is to be
enhanced, will be opened in the Visual Studio workspace.

Figure 3.2. Opening the File SerialGauss.cpp

The file SerialGauss.cpp provides access to the necessary libraries and also contains the initial variants of
the head program function – the function main. It provides the possibility to declare the variables and to print out
the initial program message.

Let us consider the variables, which are used in the main function of the application. The first two of them
(pMatrix and pVector) are correspondingly the matrix of the linear equation system and the vector of the right
system parts. The third variable pResult is the vector, which should be obtained as a result of solving the linear
equation system. The variable Size defines the size of the matrix and the vectors.

 double* pMatrix; // Matrix of the linear system
 double* pVector; // Right parts of the linear system
 double* pResult; // Result vector
 int Size; // Size of the matrix and the vector

As in previous labs, in order to store the matrix we should use a one-dimensional array, where the matrix is
stored row by row. Thus, the element, located at the intersection of the i-th row and the j-th matrix column in a
one-dimensional array, has the index i*Size+j.

The program code, which follows the variable declaration, is the initial message input and waiting for
pressing any key before the application is terminated:

 printf("Serial Gauss algorithm for solving linear systems\n");
 getch();

Now it is possible to make the first application run. Execute the command Rebuild Solution in the menu
Build. This command makes possible to compile the application. If the application is compiled successfully (in
the lower part of the Visual Studio window there is the following message: "Rebuild All: 1
succeeded, 0 failed, 0 skipped"), press the key F5 or execute the command Start Debugging of
the menu Debug.

Right after the program starts the following message will appear in the command console:
"Serial Gauss algorithm for solving linear systems ".

Press any key to terminate the program execution.

 Task 2 –Input the Matrix and Vector Sizes

In order to input the initial data of the Gauss algorithm of solving the linear equation systems, we will
develop the function ProcessInitialization. This function is aimed at determining the matrix and vector sizes,
allocating the memory for the initial matrix pMatrix and the vector pVector, and the result vector pResult. It is
also used for setting the element values of the initial objects. Thus, the function should have the following
heading:

// Function for memory allocation and data initialization

5

6

void ProcessInitialization (double* &pMatrix, double* &pVector,
 double* &pResult, int &Size);

At the first stage it is necessary to input the matrix size (to set the value of the variable Size). Add the bold
marked code to the function ProcessInitialization:

// Function for memory allocation and data initialization
void ProcessInitialization (double* &pMatrix, double* &pVector,
 double* &pResult, int &Size) {
 // Setting the size of the matrix and the vector
 printf("\nEnter the size of the matrix and the vector: ");
 scanf("%d", &Size);
 printf("\nChosen size = %d\n", Size);
}

The user can input the matrix size, which is read from the standard input stream stdin and stored in the
integer variable Size. After that the value of the variable Size is printed (see Figure 3.3).

Add the call of the function ProcessInitialization to the main function following the initial message line:

void main() {
 double* pMatrix; // Matrix of the linear system
 double* pVector; // Right parts of the linear system
 double* pResult; // Result vector
 int Size; // Size of the matrix and the vectors
 time_t start, finish;
 double duration;

 printf ("Serial Gauss algorithm for solving linear systems \n");
 ProcessInitialization(pMatrix, pVector, pResult, Size);
 getch();
}

Compile and run the application. Make sure that the value of the variable Size is set correctly.

Figure 3.3. Setting the Matrix and the Vector Sizes

As in previous labs, we will check the input correctness. Let us check the size. If there is an error there (the
size is either equal to zero or negative), we will continue to ask for the matrix size until a positive number is
entered. To implement this behavior let us add the code, which inputs the matrix size in the loop:

 // Setting the size of the matrix and the vector
 do {
 printf("\nEnter the size of the matrix and the vector: ");
 scanf("%d", &Size);
 printf("\nChosen size = %d", Size);

 if (Size <= 0)
 printf("\nSize of objects must be greater than 0!\n");
 } while (Size <= 0);

Compile and run the application. Try to enter a nonpositive number as the matrix size. Make sure that the
invalid situations are processed correctly.

 Task 3 – Input the Initial Data

The function of the computation process initialization must also provide memory allocation for object
storage (add the bold marked code to the function ProcessInitialization):

// Function for memory allocation and data initialization
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,

7

 double* &pCMatrix, int &Size) {
 // Setting the size of the matrix and the vector
 do {
 <…>
 }
 while (Size <= 0);

 // Memory allocation
 pMatrix = new double [Size*Size];
 pVector = new double [Size];
 pResult = new double [Size];
}

Further, it is necessary to set the values of all the matrix elements of the linear equation system pMatrix and
the right part vector pVector. It should be noted that the matrix of the linear equation systems cannot be set
arbitrarily. The solution for the linear equation system exists only in the case when the matrix of the linear
equation system is non-degenerate (i.e. there is a reverse matrix for this matrix). It is not reasonable to check
whether the matrix generated arbitrarily is non-degenerate (this operation is very “expensive”). That is why we
will develop the function of generating the initial data set so that the matrix is originally non-degenerate. We
will generate the lower triangle matrix, i.e. the matrix where all non-zero elements are located either on the main
diagonal or lower than the diagonal. To set the element values of the matrix pMatrix and the vector pVector we
will develop the function DummyDataInitialization. The heading and the implementation of the function are
given below:

// Function for simple initialization of the matrix and the vector elements
void DummyDataInitialization (double* pMatrix, double* pVector, int Size) {
 int i, j; // Loop variables
 for (i=0; i<Size; i++) {
 pVector[i] = i+1;
 for (j=0; j<Size; j++) {
 if (j <= i)
 pMatrix[i*Size+j] = 1;
 else
 pMatrix[i*Size+j] = 0;
 }
 }
}

As it can be seen from the given code, this function provides setting the matrix and the vector elements in
rather a simple way: the values of all the elements of the matrix матрицы pMatrix, which are located above the
main diagonal, are equal to 0, the rest of the elements are equal to 1. The vector pVector consists of sequential
integer positive numbers from 1 to Size. So in case when the user chooses the object size equal to 4, the
following matrix and the vector will be determined:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

4
3
2
1

,

1111
0111
0011
0001

pVectorpMatrix .

The function DummyDataInitialization must be called after allocating the memory in the function
ProcessInitialization:

// Function for memory allocation and data initialization
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,
 double* &pCMatrix, int &Size) {
 <…>
 // Memory allocation
 <…>

 // Initialization of the matrix and the vector elements
 DummyDataInitialization(pMatrix, pVector, Size);
}

Let us develop two more functions, which help to control data input. These are the functions of the
formatted object output: PrintMatrix and PrintVector. These functions were developed in Lab 1 and the code of
the functions is available in the project (more detailed information on the functions PrintMatrix and PrintVector
is given in Task 3, Exercise 2, Lab 1). Let us add these functions to print out the matrix pMatrix and the vector
pVector to the main function:

 // Memory allocation and data initialization
 ProcessInitialization(pAMatrix, pBMatrix, pCMatrix, Size);

 // Matrix and vector output
 printf ("Initial Matrix \n");
 PrintMatrix(pMatrix, Size, Size);
 printf("Initial Vector \n");
 PrintVector(pVector, Size);

Compile and run the application. Make sure that the data input is executed according to the above-
described rules (Figure 3.4). Run the application several times setting various matrix sizes.

Figure 3.4. The Result of the Program Execution after the Completion of Task 3

It should be noted that if the matrix of the linear equation system and the vector of the right parts are set
according to the above described rules, then the system has a simple solution, and all the result vector elements
of the vector pResult must be equal to 1.

Let us develop one more function of generating the initial data. In this function we will also set the lower
triangle matrix but the matrix elements and the elements of the right part vector will be determined by means of
a random number generator (the random number generator is initiated by the current clock):

// Function for random initialization of the matrix and the vector elements
void RandomDataInitialization(double* pMatrix, double* pVector, int Size) {
 int i, j; // Loop variables
 srand(unsigned(clock()));
 for (i=0; i<Size; i++) {
 pVector[i] = rand()/double(1000);
 for (j=0; j<Size; j++) {
 if (j <= i)
 pMatrix[i*Size+j] = rand()/double(1000);
 else
 pMatrix[i*Size+j] = 0;
 }
 }
}

Replace the call of the function for simple generation of the initial data DummyDataInitialization by the
call of the function for random generation RandomDataInitialization. Compile and run the application. Make
sure that the data is set according to the above described rules.

 Task 4 –Terminate the Program Execution

Let us first develop the function for correct computation process termination, before working out the Gauss
algorithm. For this purpose it is necessary to deallocate the memory, which has been dynamically allocated in the
course of the program execution. Let us develop the corresponding function ProcessTermination. The memory
has been allocated for storing the initial matrix pMatrix and the vector pVector, and also for storing the result
vector of solving the linear equation system pResult. These objects, consequently, should be given to the
function ProcessTermination as arguments:

// Function for computational process termination
void ProcessTermination (double* pMatrix,double* pVector,double* pResult) {

8

9

 delete [] pMatrix;
 delete [] pVector;
 delete [] pResult;
}

The function ProcessTermination should be called immediately before the program termination:

 // Memory allocation and data initialization
 ProcessInitialization(pMatrix, pVector, pResult, Size);

 // Matrix and vector output
 printf ("Initial Matrix \n");
 PrintMatrix(pMatrix, Size, Size);
 printf("Initial Vector \n");
 PrintVector(pVector, Size);

 // Process termination
 ProcessTermination(pMatrix, pVector, pResult);

Compile and run the application. Make sure it is being executed correctly.

 Task 5 – Implement the Gaussian Elimination

Let us develop the main computational part of the program. In order to solve the linear equation system by
means of the Gauss algorithm, we will implement the function SerialResultCalculation, which gets the initial
matrix pMatrix and the vector pVector, the sizes of the objects Size, and the result vector pResult as input
parameters.

According to the algorithm given in Exercise 2, the execution of the Gauss algorithm consists of the two
stages: the Gaussian elimination and the back substitution. At the stage of executing the Gaussian elimination the
linear equation system is reduced to the upper triangle form by means of equivalent transformations. In order to
carry out this stage, we will develop the function SerialGaussianElimination. In the course of executing the back
substitution, the result vector values are determined by means of reducing the matrix to the diagonal form. In
order to carry out this stage, we will develop the function SerialBackSubstitution. Thus, the code of the function
SerialResultCalculation should be the following:

// Function for the execution of Gauss algorithm
void SerialResultCalculation(double* pMatrix, double* pVector,
 double* pResult, int Size) {
 // Gaussian elimination
 SerialGaussianElimination (pMatrix, pVector, Size);
 // Back substitution
 SerialBackSubstitution (pMatrix, pVector, pResult, Size);
}

In this task we will develop the Gaussian elimination. The back substitution will be executed in the next
task of the lab.

The Gaussian elimination reduces the linear equation system matrix to the upper triangle form by means of
equivalent transformation. At each iteration of the executed transformations we can use the method of partial
pivoting for choosing the pivot row (see Exercise 2). According to this method the row, containing the element
of the next matrix column, which is maximum in absolute magnitude, is chosen as the pivot one.

In order to store the order of choosing the pivot rows, we will use the array pSerialPivotPos. The
i-th element of the array will store the number of the row, which was chosen as the pivot one in the course of
executing the i-th iteration of the Gaussian elimination. Besides, we will use one more auxiliary array
pSerialPivotIter. Each element of the array pSerialPivotIter[i] will store the number of the iteration , where the
row with the number i was chosen as the pivot one. Originally we will fill the array pSerialPivotIter with the
elements equal to -1 (i.e. the value -1 in the element of the array pSerialPivotIter[i] means that the row with the
number i has not been chosen as the pivot one yet).

Let us declare the corresponding arrays as global variables, allocate the memory for these arrays before the
beginning of executing the function GaussianElimination, deallocate the allocated memory after executing the
back substitution of the Gauss method (the function BackSubstitution):

int* pSerialPivotPos; // Number of pivot rows selected at the iterations
int* pSerialPivotIter; // Iterations, at which the rows were pivots

10

// Function for the execution of Gauss algorithm
void SerialResultCalculation(double* pMatrix, double* pVector,
 double* pResult, int Size) {

 // Memory allocation
 pSerialPivotPos = new int [Size];
 pSerialPivotIter = new int [Size];
 for (int i=0; i<Size; i++) {
 pSerialPivotIter[i] = -1;
 }
 // Gaussian elimination
 SerialGaussianElimination (pMatrix, pVector, Size);
 // Back substitution
 SerialBackSubstitution (pMatrix, pVector, pResult, Size);

 // Memory deallocation
 delete [] pSerialPivotPos;
 delete [] pSerialPivotIter;
}

According to the computational scheme of the Gaussian elimination, it is necessary to determine the pivot
matrix row at each iteration. The pivot row contains the column element being maximum in the absolute
magnitude. This column number is equal to the number of the current iteration and the pivot row is selected
among the rows, which have not been previously chosen as the pivot ones. The number of the pivot row is stored
in the variable Pivot and is recorded in the corresponding element of the array pSerialPivotPos. Besides, the
value of the element of the array pSerialPivotIter, which corresponds to the selected row, is set equal to the
number of the current iteration.

Let us develop the function FindPivotRow in order to choose the pivot row. It is necessary to use the matrix
of the linear equation system pMatrix, the matrix size Size and the number of the current iteration Iter as the
arguments of the function. This function must look through the rows, which have not been previously selected as
the pivot ones, choose among them the row, which contains the maximum element in the position Iter, and
return the number of the selected row:

// Function for finding the pivot row
int FindPivotRow(double* pMatrix, int Size, int Iter) {
 int PivotRow = -1; // Index of the pivot row
 double MaxValue = 0; // Value of the pivot element
 int i; // Loop variable

 // Choose the row, that stores the maximum element
 for (i=0; i<Size; i++) {
 if ((pSerialPivotIter[i] == -1) &&
 (fabs(pMatrix[i*Size+Iter]) > MaxValue))) {
 PivotRow = i;
 MaxValue = fabs(pMatrix[i*Size+Iter]);
 }
 }
 return PivotRow;
}

Let us add the call of the function FindPivotRow to the function, which carries out the Gaussian
elimination. We will store the obtained value in corresponding element of the array pPivotPos and print the
numbers of the selected pivot rows in order to check the computation correctness:

// Function for the Gaussian elimination
void SerialGaussianElimination(double* pMatrix,double* pVector,int Size) {
 int Iter; // Number of the iteration of the Gaussian elimination
 int PivotRow; // Number of the current pivot row
 for (Iter=0; Iter<Size; Iter++) {
 // Finding the pivot row
 PivotRow = FindPivotRow(pMatrix, Size, Iter);
 pSerialPivotPos[Iter] = PivotRow;
 pSerialPivotIter[PivotRow] = Iter;
 }

11

 printf ("Indices of the pivot rows: \n");
 for (int i=0; i<Size; i++)
 printf("%d ", pSerialPivotPos[i]);
}

Turn the call of the function, which executes the back substitution of the Gauss method, into comments in
the function SerialResultCalculation. Add the call of the function SerialResultCalculation to the main function:

void main() {
 <…>
 // Memory allocation and data initialization
 ProcessInitialization(pMatrix, pVector, pResult, Size);

 // The Matrix and the vector output
 <…>
 // Execution of Gauss algorithm
 SerialResultCalculation(pMatrix, pVector, pResult, Size);

 // Computational process termination
 ProcessTermination(pMatrix, pVector, pResult);
 getch();
}

Compile and run the application. Make sure that the pivot rows are chosen correctly. If you use the function
DummyDataInitialization, the number of the pivot rows must coincide with the number of the iterations, at
which the rows were selected. If the function RandomDataInitialization is used, the results of the print are
shown in Figure 3.5 (to make it clearer the values of the pivot elements are marked by the red color).

Figure 3.5. Selecting the Leading Pivot Rows

After selecting the pivot rows, these rows multiplied by the corresponding multipliers are subtracted from
the rows, which have not yet been chosen as the pivot ones, and thus, the elements of the corresponding columns
are zeroed. In order to carry out the subtraction we will develop the function SerialEliminateColumns. This
function takes the matrix of the linear equation system pMatrix, the vector of the right part pVector, the number
of the current pivot row Pivot, the number of the current iteration Iter and the size Size as the input arguments.
For all the rows of the matrix pMatrix the function EliminateRows executes the following operations: it checks
whether the given row has been chosen as the pivot one at one of the previous iterations using the values
recorded in the array pSerialPivotIter; and if the result of the check is negative, the row undergoes the
transformation according to formula (3.3):

// Function for the column elimination
void SerialColumnElimination (double* pMatrix, double* pVector, int Pivot,
 int Iter, int Size) {
 double PivotValue, PivotFactor;
 PivotValue = pMatrix[Pivot*Size+Iter];
 for (int i=0; i<Size; i++) {
 if (pSerialPivotIter[i] == -1) {
 PivotFactor = pMatrix[i*Size+Iter] / PivotValue;
 for (int j=Iter; j<Size; j++) {
 pMatrix[i*Size + j] -= PivotFactor * pMatrix[Pivot*Size+j];
 }
 pVector[i] -= PivotFactor * pVector[Pivot];
 }
 }

12

}

Add the call of the function SerialColumnElimination to the code of the function, which executes the
Gaussian elimination. Instead of printing the array pPivotPos print the matrix of the linear equation system
pMatrix. It must be reduced to the upper triangle form (accurate to the row permutation, i.e. there must be a
possibility to permute the matrix rows so as to obtain the upper triangle matrix) (see Figure 3.6).

// Function for the Gaussian elimination
void SerialGaussianElimination(double* pMatrix,double* pVector,int Size) {
 int Iter; // Number of the iteration of the Gaussian elimination
 int PivotRow; // Number of the current pivot row
 for (Iter=0; Iter<Size; Iter++) {
 // Finding the pivot row
 PivotRow = FindPivotRow(pMatrix, Size,Iter);
 pSerialPivotPos[Iter] = PivotRow;
 pSerialPivotIter[PivotRow] = Iter;
 SerialColumnElimination(pMatrix, pVector, PivotRow, Iter, Size);
 }
 printf ("The matrix of the linear system after the elimination: \n");
 PrintMatrix(pMatrix, Size, Size);
}

Compile and run the application. Make sure that the Gaussian elimination is executed correctly.

Figure 3.6. The Result of the Execution of the Gaussian Elimination

 Task 6 – Implement the Back Substitution

To execute the back substitution of the Gauss algorithm we will develop the function
SerialBackSubstitution. Let us use the matrix of the linear equation system pMatrix, the vector of the right parts
pVector, the result vector pResult and the size Size as the function input arguments: :

// Function for the back substution
void SerialBackSubstitution (double* pMatrix, double* pVector,
 double* pResult, int Size);

The back substitution is described in detail in Exercise 2. The execution of the back substitution starts with
the matrix row, which was chosen as the pivot one at the last iteration of the Gaussian elimination. You can find
out the row number from the last element of the array pSerialPivotPos (on the analogy with this, the number of
the row chosen as the pivot at the iteration next to the last, is stored in the next to the last element of the array
pSerialPivotPos etc.). Using this row you may compute an element of the result vector. Then using the element it
is possible to simplify the remaining matrix rows:

// Function for the back substution
void SerialBackSubstitution (double* pMatrix, double* pVector,
 double* pResult, int Size) {
 int RowIndex, Row;
 for (int i=Size-1; i>=0; i--) {
 RowIndex = pSerialPivotPos[i];
 pResult[i] = pVector[RowIndex]/pMatrix[Size*RowIndex+i];
 for (int j=0; j<i; j++) {
 Row = pSerialPivotPos[j];
 pVector[j] -= pMatrix[Row*Size+i]*pResult[i];

13

 pMatrix[Row*Size+i] = 0;
 }
 }
}

Eliminate the matrix print after the execution of the Gaussian elimination. In order to generate the initial
data use the method DummyDataInitialization again. Restore the call of the function executing the back
substitution (delete the comment signs in the call line). Call the print of the result vector after the execution of
the Gauss algorithm in the main function:

void main() {
 <…>

 // The execution of Gauss algorithm
 SerialResultCalculation(pMatrix, pVector, pResult, Size);

 // Printing the result vector
 printf ("\n Result Vector: \n");
 PrintVector(pResult, Size);

 // Computational process termination
 ProcessTermination(pMatrix, pVector, pResult);
 getch();
}

Compile and run the application. If the algorithm is implemented correctly, all the result vector elements
must be equal to 1 (Figure 3.7).

Figure 3.7. The Result of Executing the Gauss Algorithm

 Task 7 – Carry out Computational Experiments

In order to test the speed up of the parallel calculations, it is necessary to carry out experiments on
calculating the serial algorithm execution time. It is reasonable to analyze the algorithm execution time for
considerably large linear equation systems. We will set the elements of large matrices and vectors by means of
the random data generator (the function RandomDataInitialization):

In order to determine the time, we will add the calls of the functions, which allow us to find out the
computation execution time, to the obtained program. As previously, we will use the following function:

time_t clock(void);

Let us add the computation and the output of the Gauss method execution time to the program code. For
this purpose we will clock in before and after the call of the function SerialResultCalculation:

 // The execution of Gauss algorithm
 start = clock();
 SerialResultCalculation(pMatrix, pVector, pResult, Size);
 finish = clock();
 duration = (finish-start)/double(CLOCKS_PER_SEC);

 // Printing the result vector
 printf ("\n Result Vector: \n");
 PrintVector(pResult, Size);

14

 // Printing the execution time of Gauss method
 printf("\n Time of execution: %f\n", duration);

Compile and run the application. In order to carry out the computational experiments with large linear
equation systems, eliminate the matrix and vector print and the result vector print (transform the corresponding
code lines into comment). Carry out the computational experiments and register the results in the following
table:

Table 3.1. The Execution Time of the Serial Gauss Algorithm

Test number Matrix Size Execution Time (sec)
1 10
2 100
3 500
4 1,000
5 1,500
6 2,000
7 2,500
8 3,000

The analysis of the computations executed in the Gauss method can demonstrate that the theoretical
execution time for the serial Gauss algorithm may be calculated in accordance with the following expression
(see Section 9 “Parallel methods of solving the linear equation systems”)

() τ⋅+= 23
1 3/2 SizeSizeT (3.5)

where τ is the execution time of a basic computational operation.
Let us fill out the table of comparison of the experiment execution time to the time, which may be obtained

according to the formula (3.5). In order to compute the execution time of a single operation τ, we will apply the
following technique: choose one of the experiments as a pivot. Then let us divide the execution time of a pivot
experiment by the number of the executed operations (the number of the operations may be calculated using
formula (3.5)). Thus, we will calculate the execution time of a basic computational operation. Then using this
value we will calculate the theoretical execution time for the remaining experiments. It should be noted that the
execution time of this basic operation depends generally speaking on the linear equation system size. That is why
we should be oriented at a certain average case while choosing the pivot.

Compute the theoretical execution time for the Gauss algorithm. Give the results in the form of the table:
Table 3.2. The Comparison of the Experiment Execution Time of the Serial Gauss Algorithm to the

Theoretically Calculated Time

Basic Computational Operation Execution Time τ (sec):
Test Number Matrix Size Execution Time (sec) Theoretical Time (sec)

1 10

2 100
3 500
4 1,000
5 1,500
6 2,000
7 2,500
8 3,000

 Exercise 4 –Developing the Parallel Gauss Algorithm

 Subtask Definition

In close consideration of the Gauss method it is possible to note that all the computations are reduced to the
same computational operations on the rows of the coefficient matrix of the linear equation system. As a result,
the data parallelism principle may be applied as the basis of the Gauss algorithm parallel implementation. All the

15

computations connected with processing a row of the matrix A and the corresponding element of the vector b
may be taken as the basic computational subtask in this case.

 Analysis of Information Dependencies

Let us consider the general scheme of parallel computations and the information dependencies among the
basic subtasks, which appear in the course of computations.

For the execution of the Gaussian elimination stage it is necessary to perform (n-1) iterations of
eliminating the unknown variables in order to transform the matrix A to the upper triangle form.

The execution of iteration i , 0≤ i<n-1, of the Gaussian elimination includes a number of sequential
operations. First of all, at the very beginning of the iteration it is necessary to select the pivot row, which (if the
partial pivoting scheme is used) is determined by the search of the row with the maximum absolute value among
the elements of the column i , which corresponds to the eliminated variable x i . As the rows of matrix A are
distributed among subtasks, the subtasks with the numbers k, k>i , should exchange their coefficients of the
eliminated variable x i for the maximum value search. After all the necessary data has been accumulated in each
subtask, it is possible to determine, which of them holds the pivot row, and which value is the pivot element.

To carry out the computations further the pivot subtask has to broadcast its pivot row of the matrix A and
the corresponding element of the vector b to all the other subtasks with the numbers k, k>i . After receiving the
pivot row the subtasks perform the subtraction of rows, thus, providing the elimination of the corresponding
variable x i .

During the execution of the back substitution the subtasks perform the necessary computations for
calculating the value of the unknowns. As soon as some subtask i , 0≤ i<n-1, determines the value of its
variable x i , this value must be broadcasting to all the subtasks with the numbers k, k<i. After communications
the subtasks substitute the variables x i for the obtained value and modify the elements of the vector b.

 Scaling and Subtask Distribution among the Processors

The basic subtasks are characterized by the same computational complexity and balanced amount of the
transmitted data. In case when the size of the matrix, which describes the linear equation system appears to be
greater than the number of the available processors (i.e. p<n), the basic subtasks may be enlarged by uniting
several matrix rows in a subtask. Let us make use of the familiar scheme of block striped data partitioning: each
process is allocated a continuous sequence of linear equation matrix rows.

The distribution of the subtasks among the processors must take into account the nature of the
communication operations performed in the Gauss method. One-to-all broadcast is the main form of the
information communication of the subtasks. As a result, the data transmission network topology must be a
hypercube or a complete graph in order to implement the desired information communications among the basic
subtasks efficiently.

 Exercise 5 – Coding the Parallel Gauss Program for Solving the Linear
Equation Systems

To do this Exercise you should develop the parallel Gauss program for solving the linear equation systems.
This Exercise will help you:

• To get experience in developing the nontrivial parallel programs,
• To be familiar with collective data transmission operations in MPI.

Task 1 – Open the Project ParallelGauss

Open the project ParallelGauss using the following steps:
• Start the application Microsoft Visual Studio 2005, if it has not been started yet,
• Execute the command Open→Project in the menu File,
• Choose the folder с:\MsLabs\ParallelGauss in the dialog window Open Project,
• Make the double click on the file ParallelGauss.sln or select it and execute the command Open.
After the project has been open in the window Solution Explorer (Ctrl+Alt+L), make the double click on

the file of the initial code ParallelGauss.cpp, as it is shown in Figure 3.8. After that, the code, which is to be
enhanced, will be opened in the Visual Studio workspace.

Figure 3.8. Opening the File ParallelGauss.cpp with the use of the Solution Explorer

The main function of the parallel application, which is located in the file ParallelGauss.cpp, contains the
declaration of the necessary variables, the calls of the initialization functions and the MPI program environment
execution termination, the functions for determining the number of the available processes and the process rank:

int ProcNum = 0; // Number of the available processes
int ProcRank = 0; // Rank of the current process

void main(int argc, char* argv[]) {
 double* pMatrix; // Matrix of the linear system
 double* pVector; // Right parts of the linear system
 double* pResult; // Result vector
 int Size; // Size of the matrix and the vectors
 double Start, Finish, Duration;

 setvbuf(stdout, 0, _IONBF, 0);

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);
 MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank);

 if (ProcRank == 0)
 printf("Parallel Gauss algorithm for solving linear systems\n");

 MPI_Finalize();
}

It should be noted that the variables ProcNum and ProcRank were declared global as in case of the previous
labs.

The following functions and variables copied from the serial project, are also located in the file
ParallelGauss.cpp: the global variable pSerialPivotPos, the functions DummyDataInitialization,
RandomDataInitialization, SerialResultCalculation, SerialGaussianElimination, SerialBackSubstitution,
SerialColumnElimination, FindPivotRow (the use of the functions and variables is described in detail in Exercise
3 of this lab). The first two functions will be used in the parallel application for data initializing. The other
functions will provide the opportunity to execute the serial algorithm and to compare the results of executing the
serial and the parallel Gauss algorithms.

In this parallel application we will use the functions PrintMatrix and PrintVector to print matrices and
vectors. The implementation of the functions has also been copied to the parallel application. Besides, there are
also preliminary versions for the initialization functions (ProcessInitialization) and the function of the process
termination (ProcessTermination).

Compile and run the application using the Visual Studio. Make sure that the initial message is output on the
command console:

"Parallel Gauss algorithm for solving linear equation systems ".

 Task 2 – Input the Initial Data

At the next stage of the development of the parallel application it is necessary to set the sizes of the linear
equation system matrix, the right part vector, the result vector and to allocate memory for storing them.
According to the parallel computation scheme the initial objects can exist only on the root process (the process
with the rank 0). On each process at any given moment of time there is a stripe of the linear equation system

16

17

matrix, a block of the right part vector and a block of the result vector. Let us determine the variables for storing
the blocks and the block sizes:

void main(int argc, char* argv[]) {
 double* pMatrix; // Matrix of the linear system
 double* pVector; // Right parts of the linear system
 double* pResult; // Result vector
 double *pProcRows; // Rows of the matrix A
 double *pProcVector; // Block of the vector b
 double *pProcResult; // Block of the vector x
 int Size; // Size of the matrix and vectors
 int RowNum; // Number of the matrix rows
 double Start, Finish, Duration;

In order to determine the matrix size and the vector size, to calculate the number of matrix rows, which will
be processed by a given process, in order to allocate the memory for storing the matrix, the vectors and their
blocks and also to generate the initial matrix and vector elements, we will develop the function
ProcessInitialization.

// Function for memory allocation and data initialization
void ProcessInitialization (double* &pMatrix, double* &pVector,
 double* &pResult, double* &pProcRows, double* &pProcVector,
 double* &pProcResult, int &Size, int &RowNum);

In order to set the size Size, we will implement a dialog with the user as it has been done in the previous
labs. The application to be developed in this Exercise is oriented at the most general case: it is not required that
the size should be divisible by the number of the available processes. The only restriction is that the size Size
should not be smaller than the number of the processes ProcNum so that each process has at least a row of the
linear equation system matrix. If the user inputs an incorrect number, he is asked to repeat the input. The dialog
is carried out only on the root process. When the sizes of the matrix and the vector are defined correctly, the
value of the variable Size is broadcast to all the processes:

// Function for memory allocation and data initialization
void ProcessInitialization (double* &pMatrix, double* &pVector,
 double* &pResult, double* &pProcRows, double* &pProcVector,
 double* &pProcResult, int &Size, int &RowNum) {
 if (ProcRank == 0) {
 do {
 printf("\nEnter the size of the matrix and the vector: ");
 scanf("%d", &Size);
 if (Size < ProcNum) {
 printf ("Size must be greater than number of processes! \n");
 }
 } while (Size < ProcNum);
 }
 MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD);
}

After the size is set, it is possible to determine the number of the matrix rows, which will be processed by
each process, and to allocate the memory for storing the matrix, the vector, the result matrix, the matrix stripe
and the vector blocks. In order to determine the number of rows RowNum, which will be processed by a given
process, let us use the method described in Lab 1 for the development of the parallel application of matrix-vector
multiplication, if the matrix size is not divisible by the number of processes:

// Function for memory allocation and data initialization
void ProcessInitialization (double* &pMatrix, double* &pVector,
 double* &pResult, double* &pProcRows, double* &pProcVector,
 double* &pProcResult, int &Size, int &RowNum) {
 <…>
 MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD);

 int RestRows = Size;
 for (int i=0; i<ProcRank; i++)
 RestRows = RestRows-RestRows/(ProcNum-i);
 RowNum = RestRows/(ProcNum-ProcRank);

18

 pProcRows = new double [RowNum*Size];
 pProcVector = new double [RowNum];
 pProcResult = new double [RowNum];

 if (ProcRank == 0) {
 pMatrix = new double [Size*Size];
 pVector = new double [Size];
 pResult = new double [Size];
 }
}

In order to determine the elements of the linear equation system matrix pMatrix and the right part vector
pVector we will use the function DummyDataInitialization, which was developed in the course of the
implementation of the serial Gauss algorithm:

// Function for memory allocation and data initialization
void ProcessInitialization (double* &pMatrix, double* &pVector,
 double* &pResult, double* &pProcRows, double* &pProcVector,
 double* &pProcResult, int &Size, int &RowNum) {
 <…>
 if (ProcRank == 0) {
 pMatrix = new double [Size*Size];
 pVector = new double [Size];
 pResult = new double [Size];
 // Initialization of the matrix and the vector elements
 DummyDataInitialization (pMatrix, pVector, Size);
 }
}

Let us call the function ProcessInitialization from the main function of the parallel application. In order to
control the correctness of the initial data input, we will use the function of the formatted matrix output
PrintMatrix and the vector PrintVector, let us print out the linear equation system matrix and the right part
vector on the root process.

void main(int argc, char* argv[]) {
 <…>
 // Memory allocation and data initialization
 ProcessInitialization(pMatrix, pVector, pResult, pProcRows, pProcVector,
 pProcResult, Size, RowNum);
 if (ProcRank == 0) {
 printf(“Initial matrix \n”);
 PrintMatrix(pMatrix, Size, Size);
 printf(“Initial vector \n”);
 PrintVector(pVector, Size);
 }
 MPI_Finalize();
}

Compile and run the application. Make sure that the dialog for the input of the size makes possible to enter
only the correct size value. Analyze the values of the matrix and the vector. If the data is set correctly, the linear
system matrix must be lower and triangle, all the elements located lower than the main diagonal must be equal to
1, the right part vector elements must be integer positive numbers from 1 to Size. (Figure 3.9).

19

Figure 3.9. The Test Values of The Initial Data

 Task 3 – Terminate the Parallel Program

In order to terminate the application at each stage of development, we should develop the function of
correct termination. For this purpose we should deallocate the memory, which has been allocated dynamically in
the course of the program execution. Let us develop the corresponding function ProcessTermination. The
memory for storing the matrix pMatrix, the vector pVector and the result vector pResult, was allocated on the
root process; besides, memory was allocated on all the processes for storing the stripe of the matrix pProcRows,
the blocks of the right part vector pProcVector and the result vector pProcResult. All these objects must be given
to the function ProcessTermination as arguments:

// Function for computational process termination
void ProcessTermination (double* pMatrix, double* pVector, double* pResult,
 double* pProcRows, double* pProcVector, double* pProcResult) {
 if (ProcRank == 0) {
 delete [] pMatrix;
 delete [] pVector;
 delete [] pResult;
 }
 delete [] pProcRows;
 delete [] pProcVector;
 delete [] pProcResult;
}

The call of the process termination function must be executed immediately before the call of the
termination of the parallel program:

 // Process termination
 ProcessTermination (pMatrix, pVector, pResult, pProcRows, pProcVector,
 pProcResult);
 MPI_Finalize();
}

Compile and run the application. Make sure that it operates correctly.

 Task 4 – Distribute the Data among the Processes

In accordance with the parallel computation scheme, described in the previous Exercise, the system of
linear equations must be distributed among the processes in horizontal stripes (divided into continuous sequences
of rows).

The function DataDistribution is responsible for data distribution. The matrix pMatrix and the vector
pVector, the horizontal stripe of the matrix pProcRows, and the corresponding block of the right part vector
pProcVector, and also the object sizes (the matrix size and the vector size Size and the number of rows in the
horizontal stripe RowNum) must be given to the function as arguments:

// Function for the data distribution among the processes
void DataDistribution(double* pMatrix, double* pProcRows, double* pVector,
 double* pProcVector, int Size, int RowNum);

In order to distribute the matrix into horizontal stripes and broadcast these stripes, we will use the
procedure described in Lab 1 for the development of the parallel application of matrix vector multiplication in
case when the matrix size is not divisible by the number of processes.

// Function for the data distribution among the processes
void DataDistribution(double* pMatrix, double* pProcRows, double* pVector,
 double* pProcVector, int Size, int RowNum) {

 int *pSendNum; // Number of the elements sent to the process
 int *pSendInd; // Index of the first data element sent to the process
 int RestRows=Size; // Number of rows, that have not been distributed yet
 int i; // Loop variable

 // Alloc memory for temporary objects
 pSendInd = new int [ProcNum];

20

 pSendNum = new int [ProcNum];

 // Define the disposition of the matrix rows for the current process
 RowNum = (Size/ProcNum);
 pSendNum[0] = RowNum*Size;
 pSendInd[0] = 0;
 for (i=1; i<ProcNum; i++) {
 RestRows -= RowNum;
 RowNum = RestRows/(ProcNum-i);
 pSendNum[i] = RowNum*Size;
 pSendInd[i] = pSendInd[i-1]+pSendNum[i-1];
 }

 // Scatter the rows
 MPI_Scatterv(pMatrix, pSendNum, pSendInd, MPI_DOUBLE, pProcRows,
 pSendNum[ProcRank], MPI_DOUBLE, 0, MPI_COMM_WORLD);

 // Free the memory
 delete [] pSendNum;
 delete [] pSendInd;
}

To partition the vector we will use the same sequence of actions. We will make only slight changes: in case
of the parallel Gauss algorithm execution we should be able to use the row number and to determine, on which
of the process the row is located and what number it has in the process stripe. In order to solve the problem
efficiently we will arrange two global arrays: pProcInd and pProcNum. There must be ProcNum elements in
each of the arrays. The element of the first array pProcInd[i] determines the number of the first row located on
the process with rank i. The element of the second array pProcNum[i] determines the number of the linear
system rows, which are processed by the process with rank i. Let us declare the corresponding global variables,
allocate the memory for the arrays in the function DataDistribution, fill the arrays with values. It should be noted
that the arrays may be used for scattering the right part vector by means of the function MPI_Scatter.

int* pProcInd; // Number of the first row located on the processes
int* pProcNum; // Number of the linear system rows located on the processes

// Function for the data distribution among the processes
void DataDistribution(double* pMatrix, double* pProcRows, double* pVector,
 double* pProcVector, int Size, int RowNum) {
 <…>
 // Alloc memory for temporary objects
 pProcInd = new int [ProcNum];
 pProcNum = new int [ProcNum];
 <…>
 // Free the memory
 delete [] pSendNum;
 delete [] pSendInd;
}

Correspondingly, it is necessary to call the data distribution function from the main program immediately
after the call of the computational process initialization, before starting the execution of the Gauss algorithm:

 // Memory allocation and data initialization
 ProcessInitialization(pMatrix, pVector, pResult, pProcRows, pProcVector,
 pProcResult, Size, RowNum);

 // Distributing the initial data between the processes
 DataDistribution(pMatrix, pProcRows, pVector, pProcVector, Size, RowNum);

Let us delete the initial print after the execution of the function ProcessInitialization. We will check the
correctness of the data distribution among the processes up. For this purpose we should print the matrix and
vector, and then the matrix stripes and the vector blocks located on each of the processes after the execution of
the function DataDistribution. Let us add to the application code one more function, which serves for checking
the correctness of the data distribution stage. This function will be referred to as TestDistribution.

In order to arrange the formatted matrix and vector output we will use the functions PrintMatrix and
PrintVector:

21

// Function for testing the data distribution
void TestDistribution(double* pMatrix, double* pVector, double* pProcRows,
 double* pProcVector, int Size, int RowNum) {
 if (ProcRank == 0) {
 printf("Initial Matrix: \n");
 PrintMatrix(pMatrix, Size, Size);
 printf("Initial Vector: \n");
 PrintVector(pVector, Size);
 }
 for (int i=0; i<ProcNum; i++) {
 if (ProcRank == i) {
 printf("\nProcRank = %d \n", ProcRank);
 printf(" Matrix Stripe:\n");
 PrintMatrix(pProcRows, RowNum, Size);
 printf(" Vector: \n");
 PrintVector(pProcVector, RowNum);
 }
 MPI_Barrier(MPI_COMM_WORLD);
 }
}

Add the call of the function of data distribution immediately after the function DataDistribution:

 // Distributing the initial data between the processes
 DataDistribution(pMatrix, pProcRows, pVector, pProcVector, Size, RowNum);
 TestDistribution(pMatrix, pVector, pProcRows, pProcVector, Size, RowNum);

Compile the application. If you find errors in the process of compiling, correct them, comparing your code
to the code given in the lab. Run the application. Make sure that the data is distributed correctly (Figure 3.10):

Figure 3.10. Data Distribution for the Cases when the Application Is Run Using Four Processes and

the Size of the Equation System is Equal to Six

 Task 5 – Implement the Gaussian Elimination

According to the computational scheme of the Gauss algorithm for solving the linear equation systems, the
method consists of the two stages: the Gaussian el iminat ion and the back subst i tu t ion. In order to
execute the parallel Gauss algorithm we will develop the function ParallelResultCalculation, which contains the
calls of the functions for executing the Gauss algorithm stages:

// Function for execution of the parallel Gauss algorithm
void ParallelResultCalculation(double* pProcRows, double* pProcVector,
 double* pProcResult, int Size, int RowNum) {
 // Gaussian elimination

22

 ParallelGaussianElimination (pProcRows, pProcVector, Size, RowNum);
 // Back substitution
 ParallelBackSubstitution (pProcRows, pProcVector, pProcResult, Size,
 RowNum);
}

In order to develop the parallel version of Gauss algorithm we will need two auxiliary arrays
pParallelPivotPos and pProcPivotIter.

The elements of the array pParallelPivotPos define the numbers of the matrix rows selected as the pivot
ones at the iterations of the Gauss elimination. The back substitution iterations for finding the values of the
unknown linear equation systems must be executed in exactly this order. The array pParallelPivotPos is global
and any change in any of its processes requires executing the operation of broadcasting the data to the other
program processes.

The elements of the array pProcPivotIter determine the number of iterations for the Gaussian elimination.
At these iterations the process rows were used as the pivot ones (i.e. the row i of the process was chosen the
pivot one at the iteration pProcPivotIter[i]). The original value of the array elements is set equal to -1 and , thus,
this element value of the array pProcPivotIter[i] signifies that the row i of the process is still to be processed.
Besides, it is important to note that the iteration numbers stored in the elements of the array pProcPivotIter mean
the numbers of the unknowns, which must be determined with the help of the corresponding equation rows. The
array pProcPivotIter is local for each process.

Let us declare the corresponding global variables:

int *pParallelPivotPos; // Number of rows selected as the pivot ones
int *pProcPivotIter; // Number of iterations, at which the process
 // rows were used as the pivot ones

Let us allocate the memory for storing these objects before the execution of the parallel Gauss method
stages. After the termination of the back substitution we will deallocate the memory:

// Function for the execution of the parallel Gauss algorithm
 void ParallelResultCalculation(double* pProcRows, double* pProcVector,
 double* pProcResult, int Size, int RowNum) {

 // Memory allocation
 pParallelPivotPos = new int [Size];
 pProcPivotIter = new int [RowNum];
 for (int i=0; i<RowNum; i++)
 pProcPivotIter[i] = -1;

 // Gaussian elimination
 ParallelGaussianElimination (pProcRows, pProcVector, Size, RowNum);
 // Back substitution
 ParallelBackSubstitution (pProcRows, pProcVector, pProcResult, Size,
 RowNum);

 // Memory deallocation
 delete [] pParallelPivotPos;
 delete [] pProcPivotIter;
}

Later in this Exercise we will develop the Gaussian elimination. The back substitution of the Gauss method
will be implemented in the next task of the lab.

So the function ParallelGaussianElimination is intended for the execution of the Gaussian elimination in
parallel. The matrix stripe of the linear equation system, which processes a given process (pProcRows), and a
block of the right part vector pProcVector, the size Size and the number of rows in the stripe RowNum, have to
be given to the function as arguments:

// Function for the Gaussian elimination
void ParallelGaussianElimination (double* pProcRows, double* pProcVector,
 int Size, int RowNum);

The purpose of the function is to reduce the matrix of the linear equation system to the upper triangle form
using equivalent transformations.

The number of the Gaussian elimination is equal to the order of the linear equation system. At each
iteration the pivot row is selected with the help of the method of partial pivoting. As the matrix rows of the linear

23

equation systems are distributed among the subtasks, in order to find the maximum value the subtasks must
exchange their elements of the column with the eliminated variable (at the iteration i of the Gaussian elimination
the i-th unknown is eliminated). After gathering all the necessary data in each subtask it is possible to determine,
which of the subtasks contains the pivot row and which value is the pivot element.

Let us develop the procedure of choosing the pivot row in two stages. At the first stage the local pivot rows
are selected on each process. For this purpose it is necessary to look through the rows to be processed (the row
with the number i should be processed if the value of the element pProcPivotIter[i] is equal to -1), and select the
row, which contains the maximum in absolute magnitude coefficient of eliminated unknown variable:

// Function for the Gaussian elimination
void ParallelGaussianElimination (double* pProcRows, double* pProcVector,
 int Size, int RowNum) {
 double MaxValue; // Value of the pivot element of thе process
 int PivotPos; // Position of the pivot row in the process stripe

 // The iterations of the Gaussian elimination
 for (int i=0; i<Size; i++) {
 // Calculating the local pivot row
 for (int j=0; j<RowNum; j++) {
 if ((pProcPivotIter[j] == -1) &&
 (MaxValue < fabs(pProcRows[j*Size+i]))) {
 MaxValue = fabs(pProcRows[j*Size+i]);
 PivotPos = j;
 }
 }
 }
}

After calculating the pivot row on each process, we should choose the maximum element among the
obtained pivot elements and determine, at which process it is located. The library MPI provides the function
MPI_Allreduce for carrying out these operations. The function has the following heading:

int MPI_Allreduce(void *sendbuf, void *recvbuf,int count,MPI_Datatype type,
 MPI_Op op,MPI_Comm comm),
where
 - sendbuf – the memory buffer with the sent message,
 - recvbuf – the memory buffer for the result message,
 - count - the number of elements in the messages,
 - type – the type of the message elements,
 - op - the operation to be executed with the data,
 - comm - the communicator, where the operation is executed.

Let us reduce the data in order to determine the value of the pivot element and the process, where the pivot
row is located:

// Function for the Gaussian elimination
void ParallelGaussianElimination (double* pProcRows, double* pProcVector,
 int Size, int RowNum) {
 double MaxValue; // Value of the pivot element of the process
 int PivotPos; // Position of the pivot row in the process stripe

 struct { double MaxValue; int ProcRank; } ProcPivot, Pivot;
 // The Iterations of the Gaussian elimination
 for (int i=0; i<Size; i++) {
 <…>
 // Finding the global pivot row
 ProcPivot.MaxValue = MaxValue;
 ProcPivot.ProcRank = ProcRank;
 // Finding the pivot process
 MPI_Allreduce(&ProcPivot, &Pivot, 1, MPI_DOUBLE_INT, MPI_MAXLOC,
 MPI_COMM_WORLD);
 }
}

24

After the execution of the data reduction operation the value of the pivot element and the number of the
process where the corresponding pivot row is located will be stored in the variable Pivot.

Let us fill the corresponding element of the array pProcPivotIter on the process where the pivot row is
located. Besides, let us place the number of the pivot row to the global array pPrallelPivotPos (we know the
number of the process where the pivot row is located and the row number in the stripe, which is located on the
process; this data allows us to determine the number of the row in the equation system using the values in the
arrays pProcInd and pProcNum).

 // Function for the Gaussian elimination
void ParallelGaussianElimination (double* pProcRows, double* pProcVector,
 int Size, int RowNum) {
 double MaxValue; // Value of the pivot element of the process
 int PivotPos; // Position of the pivot row in the process stripe

 struct { double MaxValue; int ProcRank; } ProcPivot, Pivot;
 // The Iterations of the Gaussian elimination stage
 for (int i=0; i<Size; i++) {
 <…>
 MPI_Allreduce(&ProcPivot, &Pivot, 1, MPI_DOUBLE_INT, MPI_MAXLOC,
 MPI_COMM_WORLD);
 // Storing the number of the pivot row
 if (ProcRank == Pivot.ProcRank){
 pProcPivotIter[PivotPos]= i;
 pParallelPivotPos[i]= pProcInd[ProcRank] + PivotPos;
 }
 MPI_Bcast(&pParallelPivotPos[i], 1, MPI_INT, Pivot.ProcRank,
 MPI_COMM_WORLD);
 }
}

In order to carry out the transformation of the remaining matrix rows it is necessary to broadcast the pivot
row and the corresponding element of the right part vector to all the processes. Let us have a buffer for storing
the pivot row on the process, the rank of which was determined in the course of reduction (Pivot.ProcRank). Let
us copy the row into the buffer and execute the broadcast:

// Function for the Gaussian elimination
void ParallelGaussianElimination (double* pProcRows, double* pProcVector,
 int Size, int RowNum) {
 double MaxValue; // Value of the pivot element of the process
 int PivotPos; // Position of the pivot row in the process stripe

 struct { double MaxValue; int ProcRank; } ProcPivot, Pivot;
 double *pPivotRow; // Pivot row of the current iteration
 pPivotRow = new double [Size+1];
 // The iterations of the Gaussian elimination stage
 for (int i=0; i<Size; i++) {
 <…>
 MPI_Bcast(&pParallelPivotPos[i], 1, MPI_INT, Pivot.ProcRank,
 MPI_COMM_WORLD);
 // Broadcasting the pivot row
 if (ProcRank == Pivot.ProcRank){
 // Fill the pivot row
 for (int j=0; j<Size; j++) {
 pPivotRow[j] = pProcRows[PivotPos*Size + j];
 }
 pPivotRow[Size] = pProcVector[PivotPos];
 }
 MPI_Bcast(pPivotRow, Size+1, MPI_DOUBLE, Pivot.ProcRank,
 MPI_COMM_WORLD);
 }
 delete [] pPivotRow;
}

25

After obtaining the pivot row the subtasks carry out the subtraction of rows, thus, providing the elimination
of the corresponding unknown. Let us implement the subtraction with the help of the function
ParallelEliminateRows:

// Fuction for the column elimination
void ParallelEliminateColumns(double* pProcRows, double* pProcVector,
 double* pPivotRow, int Size, int RowNum, int Iter) {
 double PivotFactor;
 for (int i=0; i<RowNum; i++) {
 if (pProcPivotIter[i] == -1) {
 PivotFactor = pProcRows[i*Size+Iter] / pPivotRow[Iter];
 for (int j=Iter; j<Size; j++) {
 pProcRows[i*Size + j] -= PivotFactor* pPivotRow[j];
 }
 pProcVector[i] -= PivotFactor * pPivotRow[Size];
 }
 }
}

Let us call the function of subtraction from the function, which executes the parallel algorithm of the
Gaussian elimination:

// Function for the Gaussian elimination
void ParallelGaussianElimination (double* pProcRows, double* pProcVector,
 int Size, int RowNum) {
 <…>
 for (int i=0; i<Size; i++) {
 <…>
 MPI_Bcast(pPivotRow, Size+1, MPI_DOUBLE, Pivot.ProcRank,
 MPI_COMM_WORLD);
 // Column elimination
 ParallelEliminateColumns(pProcRows, pProcVector, pPivotRow, Size,
 RowNum, i);
 }
 delete [] pPivotRow;
}

Delete the call of the function testing the data distribution stage. Transform the call of the function, which
executes the back substitution of the Gauss method ParallelBackSubstitution, into the comment. To check the
correctness of executing the Gaussian elimination, call the function TestDistribution immediately after
ParallelResultCalculation:

 // The execution of the parallel Gauss algorithm
 ParallelResultCalculation (pProcRows, pProcVector, pProcResult Size,
 RowNum);
 TestDistribution(pMatrix, pVector, pProcRows, pProcVector, Size, RowNum);

Compile and run the application. It should be noted that after the execution of the Gaussian elimination the
matrix must be reduced to the upper triangle form. Run the application.

Make sure that the developed functions are operated correctly (Figure 3.11).

Figure 3.11. The Result of the Execution of the Gaussian elimination

 Task 7 – Implement the Back Substitution

In the course of the execution of the back substitution the processes carry out the calculations necessary for
obtaining the values of the unknown variables. As soon as any process determines the value of its variable, this
variable must be broadcast to all the processes so that they can substitute the obtained value of the new unknown
variable and correct the values for the elements of the right part vector.

The back substitution execution consists of Size iterations. At each iteration it is necessary to determine the
row, which makes possible to calculate the value of the next result vector element. The row number is stored in
the array pParallelPivotIter. Using the row number you should determine the number of process, where the row
is stored, and the number of the row in the stripe pProcRows of the process. Let us develop the function
FindBackPivotRow in order to carry out these operations:

// Function for finding the pivot row of the back substitution
void FindBackPivotRow(int RowIndex, int &IterProcRank,
 int &IterPivotPos) {
 for (int i=0; i<ProcNum-1; i++) {
 if ((pProcInd[i]<=RowIndex) && (RowIndex<pProcInd[i+1]))
 IterProcRank = i;
 }
 if (RowIndex >= pProcInd[ProcNum-1])
 IterProcRank = ProcNum-1;
 IterPivotPos = RowIndex - pProcInd[IterProcRank];
}

The number RowIndex of the row, for which we determine the location is given to the function as the
argument. The function writes the rank of the process, where the row index is located, to the variable
IterProcRank, and the number of the row in the buffer pProcRows - to the variable IterPivotPos.

After the location of the row has been determined, the process, which contains the row, calculates the value
of the corresponding result vector element and broadcasts it to all the processes. Then the processes carry out the
transformation of their matrix rows:
// Function for the back substitution
void ParallelBackSubstitution (double* pProcRows, double* pProcVector,
 double* pProcResult, int Size, int RowNum) {
 int IterProcRank; // Rank of the process with the current pivot row
 int IterPivotPos; // Position of the pivot row of the process
 double IterResult; // Calculated value of the current unknown
 double val;

 // The iterations of the back substitution

26

 for (int i=Size-1; i>=0; i--) {

27

 // Calculating the rank of the process, which holds the pivot row
 FindBackPivotRow(pParallelPivotPos[i],Size,IterProcRank,IterPivotPos);

 // Calculating the unknown
 if (ProcRank == IterProcRank) {
 IterResult = pProcVector[IterPivotPos] /
 pProcRows[IterPivotPos*Size+i];
 pProcResult[IterPivotPos] = IterResult;
 }
 // Broadcasting the value of the current unknown
 MPI_Bcast(&IterResult, 1, MPI_DOUBLE, IterProcRank, MPI_COMM_WORLD);

 // Updating the values of the vector
 for (int j=0; j<RowNum; j++)
 if (pProcPivotIter[j] < i) {
 val = pProcRows[j*Size + i] * IterResult;
 pProcVector[j]=pProcVector[j] - val;
 }
 }
}

Restore the call of the function, which executes the back substitution of the Gauss algorithm (remove the
comm

 Task 8 – Gather the Result

titution of the Gauss algorithm the result vector blocks are located on
each

ent signs in the call line). After the execution of the parallel Gauss algorithm, print the result vector blocks
on each parallel process. Compile and run the application. Test the correctness of the program execution: if the
function DummyDataInitialization is used to generate the initial data, all the result vector elements must be equal
to 1.

After the execution of the back subs
process. It is necessary to collect the result vector on the root process. Let us execute the result gather by

means of the function MPI_Gatherv. The arrays necessary for calling the function were already determined in
the course of executing the function DataDistribution. Thus, the function performing the gather has a very
simple implementation:

// Function for gathering the result vector
void ResultCollection(double* pProcResult, double* pResult) {
 //Gathering the result vector on the pivot processor
 MPI_Gatherv(pProcResult, pProcNum[ProcRank], MPI_DOUBLE, pResult,
 pProcNum, pProcInd, MPI_DOUBLE, 0, MPI_COMM_WORLD);
}

Add the call of the function for gathering the result vector into the main function of the parallel application.

// The execution of the parallel Gauss algorithm
 ParallelResultCalculation(pProcRows, pProcVector, pProcResult,
 Size, RowNum);

 // Gathering the result vector
 ResultCollection(pProcResult, pResult);

It should be noticed, that the order of the unknowns in pResult vector is the same with the order of pivot
rows selection, that was carried out during the Gaussian elimination stage. So, this order is stored in the
pParallelPivotPos array. This order should be taken into account while printing the result vector. Let’s develop
the function PrintResultVector for formatted result vector output.

// Function for formatted result vector output
void PrintResultVector (double* pResult, int Size) {
 int i;
 for (i=0; i<Size; i++)
 printf("%7.4f ", pResult[pParallelPivotPos[i]]);
}

Print the result vector on the root process with the help of PrintResultVector function:
 // Gathering the result vector
 ResultCollection(pProcResult, pResult);

28

 if (ProcRank == 0) {
 printf (“Result vector \n”);
 PrintResultVector(pResult, Size);
 }

Compile and run the application. Check the correctness of the algorithm execution: if the Gauss method is
impl

 Task 9 – Test the Parallel Program Correctness

ry to check the correctness of the
prog

x and the right part
vecto

emented correctly, all the result vector elements must be equal to 1 (if the function
DummyDataInitialization is used to generate the initial data).

After the function of the result collection is developed, it is necessa
ram execution. Let us develop the function TestResult for this purpose. It will perfom the multiplication of

the linear system matrix by the vector of unknowns, that has been obtained by the means of Gauss method.
Remember, that the order of the unknowns is stored in the pParallelPivotPos array. The result of the
multiplication will be stored in the variable pRightPartVector. Then, the function will compare the vector of
right parts pVector and the result of multiplication pRightPartVector element by element. In order to obtain each
element of the result vector, it is necessary to execute serial multiplication and summation of real numbers. The
order of executing these operations can influence the machine inaccuracy of computations and its value. That is
why it is impossible to check of the vector elements are identical or not. Let us introduce the allowed divergence
value of the serial and parallel algorithm results – the value Accuracy. The vectors are assumed to be the same if
the corresponding elements differ by no more than the value of the allowed error Accuracy.

The function TestResult must have access to the linear equation system matrix pMatri
r pVector. Consequently, it may be executed only on the root process:

// Function for testing the result
void TestResult(double* pMatrix, double* pVector, double* pResult,
 int Size) {
 /* Buffer for storing the vector, that is a result of multiplication
 of the linear system matrix by the vector of unknowns */
 double* pRightPartVector;
 // Flag, that shows wheather the right parts vectors are identical or not
 int equal = 0;
 double Accuracy = 1.e-6; // Comparison accuracy

 if (ProcRank == 0) {
 pRightPartVector = new double [Size];
 for (int i=0; i<Size; i++) {
 pRightPartVector[i] = 0;
 for (int j=0; j<Size; j++) {
 pRightPartVector[i] +=
 pMatrix[i*Size+j]*pRe sult[pParallelPivotPos[j]];
 }
 }

 for (int i=0; i<Size; i++) {
 if (fabs(pRightPartVector[i]-pVector[i]) > Accuracy))
 equal = 1;
 }
 if (equal == 1)
 printf("The result of the parallel Gauss algorithm is NOT correct."
 "Check your code.");
 else
 printf("The result of the parallel Gauss algorithm is correct.");
 delete [] pRightPartVector;
 }
}

The results of the function execution are the print of the diagnostic message. It is possible to check the
results of the parallel program execution using this message regardless of the linear equation system size in case
of any values of the initial data.

29

Transform the calls of the functions into comment, using the debugging print, which have been previously
used for checking the correctness of parallel application execution. Instead of the function
DummyDataInitialization, which generates the linear equation system of a simple type, call the function
RandomDataInitialization, which generates the system of equations with the lower triangle matrix, where
nonzero elements are set by means of the random data generator. Compile and run the application. Set various
amounts of the initial data. Make sure that the application is functioning properly.

 Task 10 – Carry out the Computational Experiments

Let us determine the parallel algorithm execution time. For this purpose add clocking to the program code.
As the parallel algorithm includes the stage of data distribution, the computation of partial result block on each
process and result gather, the timing should start immediately before the call of the function DataDistribution
and stop right after the execution of the function ResultCollection:

 <…>
 Start = MPI_Wtime();

 // Distributing the initial data between the processes
 DataDistribution(pMatrix, pProcRows, pVector, pProcVector, Size, RowNum);
 // The execution of the parallel Gauss algorithm
 ParallelResultCalculation(pProcRows, pProcVector, pProcResult,
 Size, RowNum);
 // Gathering the result vector
 ResultCollection(pProcResult, pResult, Size, RowNum);

 Finish = MPI_Wtime();
 Duration = Finish-Start;

 // Testing the result
 TestResult(pMatrix, pVector, pResult, Size);

 // Printing the time spent by parallel Gauss algorithm
 if (ProcRank == 0)
 printf("\n Time of execution: %f\n", Duration);

It is obvious that this way we will print the time spent on the execution of the calculations done by the root
process (the process with the rank 0). The execution time for other processes may slightly differ from it. At the
stage of developing the parallel algorithm we paid special attention to the equal load (balancing) of the
processes. Therefore, now we have good reason to assert that the algorithm execution time for the other
processes differs from that of the root process insignificantly.

Add the marked code to the main function. Compile and run the application. Fill out the table:
Table 3.3. The Execution Time of the Parallel Gauss Algorithm for Solving the Linear Equation Systems

and the Speed Up

Parallel Algorithm
2 processors 4 processors 8 processors Test

Number
System

Size Serial Algorithm
Time Speed Up Time Speed Up Time Speed Up

1 10
2 100
3 500
4 1,000
5 1,500
6 2,000
7 2,500
8 3,000

Give the serial algorithm execution time in the column “Serial algorithm”. The time must be measured in
the course of testing the serial application in Exercise 3. In order to calculate the speed up, divide the serial
program execution time by the parallel program execution time. Place the results in the corresponding column of
the table.

In order to estimate the theoretical execution time of the parallel algorithm implemented according to the
computational scheme, which was given in Exercise 4, you might use the following expression:

)/)2(3(log)1()23(1
2

2

2 βατ ++⋅⋅−++= ∑
=

nwpnii
p

T
n

i
p (3.6)

(the detailed derivation of the formula is given in Section 9 “Parallel methods of solving the linear equation
systems” of the training material). Here n is the linear equation system size, p is the number of processes, τ is the
execution time for a basic computational operation (this value has been computed in the course of testing the
serial algorithm), α is the latency, and β is the bandwidth of the data communication network. The values
obtained in the course of performing the Compute Cluster Server Lab 2 "Carrying out Jobs under Microsoft
Compute Cluster Server 2003" should be used as the latency and the bandwidth.

Calculate the theoretical execution time for the parallel algorithm according to formula (3.6). Tabulate the
results in the following way (Table 3.4):

Table 3.4. The Comparison of the Experiment Parallel Execution Time to the Theoretically Calculated
Execution Time

2 processors 4 processors 8 processors Test
number

System
Size Model Experiment Model Experiment Model Experiment

1 10
2 100
3 500
4 1,000
5 1,500
6 2,000
7 2,500
8 3,000

Discussions

• How great is the difference between the execution time of the serial and the parallel algorithms? Why?
• Was there any speed up obtained in case when the size of the equation system was equal to 10 ? Why?
• Are the theoretical and the experiment execution time values congruent? What may be the cause of

incongruity?

Exercises

1. Study the conjugate gradient method of solving the linear equation systems. Develop the serial and the
parallel variants of the method.

 Appendix 1. The Program Code of the Serial Gauss Algorithm for Solving
the Linear Equation Systems

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <time.h>
#include <math.h>

int* pSerialPivotPos; // Number of pivot rows selected at the iterations
int* pSerialPivotIter; // Iterations, at which the rows were pivots

// Function for simple initialization of the matrix and the vector elements
void DummyDataInitialization (double* pMatrix, double* pVector, int Size) {
 int i, j; // Loop variables

 for (i=0; i<Size; i++) {
 pVector[i] = i+1;
 for (j=0; j<Size; j++) {
 if (j <= i)
 pMatrix[i*Size+j] = 1;
 else
 pMatrix[i*Size+j] = 0;

30

31

 }
 }
}

// Function for random initialization of the matrix and the vector elements
void RandomDataInitialization (double* pMatrix,double* pVector,int Size) {
 int i, j; // Loop variables
 srand(unsigned(clock()));
 for (i=0; i<Size; i++) {
 pVector[i] = rand()/double(1000);
 for (j=0; j<Size; j++) {
 if (j <= i)
 pMatrix[i*Size+j] = rand()/double(1000);
 else
 pMatrix[i*Size+j] = 0;
 }
 }
}

// Function for memory allocation and data initialization
void ProcessInitialization (double* &pMatrix, double* &pVector,
 double* &pResult, int &Size) {
 // Setting the size of the matrix and the vector
 do {
 printf("\nEnter the size of the matrix and the vector: ");
 scanf("%d", &Size);
 printf("\nChosen size = %d \n", Size);

 if (Size <= 0)
 printf("\nSize of objects must be greater than 0!\n");
 } while (Size <= 0);

 // Memory allocation
 pMatrix = new double [Size*Size];
 pVector = new double [Size];
 pResult = new double [Size];

 // Initialization of the matrix and the vector elements
 DummyDataInitialization(pMatrix, pVector, Size);
 //RandomDataInitialization(pMatrix, pVector, Size);
}

// Function for formatted matrix output
void PrintMatrix (double* pMatrix, int RowCount, int ColCount) {
 int i, j; // Loop variables
 for (i=0; i<RowCount; i++) {
 for (j=0; j<ColCount; j++)
 printf("%7.4f ", pMatrix[i*RowCount+j]);
 printf("\n");
 }
}

// Function for formatted vector output
void PrintVector (double* pVector, int Size) {
 int i;
 for (i=0; i<Size; i++)
 printf("%7.4f ", pVector[i]);
}

// Function for finding the pivot row
int FindPivotRow(double* pMatrix, int Size, int Iter) {
 int PivotRow = -1; // Index of the pivot row
 int MaxValue = 0; // Value of the pivot element

32

 int i; // Loop variable

 // Choose the row, that stores the maximum element
 for (i=0; i<Size; i++) {
 if ((pSerialPivotIter[i] == -1) &&
 (fabs(pMatrix[i*Size+Iter]) > MaxValue)) {
 PivotRow = i;
 MaxValue = fabs(pMatrix[i*Size+Iter]);
 }
 }
 return PivotRow;
}

// Function for the column elimination
void SerialColumnElimination (double* pMatrix, double* pVector, int Pivot,
 int Iter, int Size) {
 double PivotValue, PivotFactor;
 PivotValue = pMatrix[Pivot*Size+Iter];
 for (int i=0; i<Size; i++) {
 if (pSerialPivotIter[i] == -1) {
 PivotFactor = pMatrix[i*Size+Iter] / PivotValue;
 for (int j=Iter; j<Size; j++) {
 pMatrix[i*Size + j] -= PivotFactor * pMatrix[Pivot*Size+j];
 }
 pVector[i] -= PivotFactor * pVector[Pivot];
 }
 }
}

// Function for the Gaussian elimination
void SerialGaussianElimination(double* pMatrix,double* pVector,int Size) {
 int Iter; // Number of the iteration of the Gaussian elimination
 int PivotRow; // Number of the current pivot row
 for (Iter=0; Iter<Size; Iter++) {
 // Finding the pivot row
 PivotRow = FindPivotRow(pMatrix, Size, Iter);
 pSerialPivotPos[Iter] = PivotRow;
 pSerialPivotIter[PivotRow] = Iter;
 SerialColumnElimination(pMatrix, pVector, PivotRow, Iter, Size);
 }
}

// Function for the back substution
void SerialBackSubstitution (double* pMatrix, double* pVector,
 double* pResult, int Size) {
 int RowIndex, Row;
 for (int i=Size-1; i>=0; i--) {
 RowIndex = pSerialPivotPos[i];
 pResult[i] = pVector[RowIndex]/pMatrix[Size*RowIndex+i];
 for (int j=0; j<i; j++) {
 Row = pSerialPivotPos[j];
 pVector[j] -= pMatrix[Row*Size+i]*pResult[i];
 pMatrix[Row*Size+i] = 0;
 }
 }
}

// Function for the execution of the Gauss algorithm
void SerialResultCalculation(double* pMatrix, double* pVector,
 double* pResult, int Size) {

 // Memory allocation
 pSerialPivotPos = new int [Size];

33

 pSerialPivotIter = new int [Size];
 for (int i=0; i<Size; i++) {
 pSerialPivotIter[i] = -1;
 }
 // Gaussian elimination
 SerialGaussianElimination (pMatrix, pVector, Size);
 // Back substitution
 SerialBackSubstitution (pMatrix, pVector, pResult, Size);

 // Memory deallocation
 delete [] pSerialPivotPos;
 delete [] pSerialPivotIter;
}

// Function for computational process termination
void ProcessTermination (double* pMatrix,double* pVector,double* pResult) {
 delete [] pMatrix;
 delete [] pVector;
 delete [] pResult;
}

void main() {
 double* pMatrix; // Matrix of the linear system
 double* pVector; // Right parts of the linear system
 double* pResult; // Result vector
 int Size; // Sizes of the initial matrix and the vector
 time_t start, finish;
 double duration;

 printf("Serial Gauss algorithm for solving linear systems\n");
 // Memory allocation and definition of objects' elements
 ProcessInitialization(pMatrix, pVector, pResult, Size);

 // The matrix and the vector output
 printf ("Initial Matrix \n");
 PrintMatrix(pMatrix, Size, Size);
 printf("Initial Vector \n");
 PrintVector(pVector, Size);

 // Execution of the Gauss algorithm
 start = clock();
 SerialResultCalculation(pMatrix, pVector, pResult, Size);
 finish = clock();
 duration = (finish-start)/double(CLOCKS_PER_SEC);

 // Printing the result vector
 printf ("\n Result Vector: \n");
 PrintVector(pResult, Size);

 // Printing the execution time of the Gauss method
 printf("\n Time of execution: %f\n", duration);

 // Computational process termination
 ProcessTermination(pMatrix, pVector, pResult);
 getch();
}

 Appendix 2.The Program Code of the Parallel Gauss Algorithm for Solving
the Linear Equation Systems

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

34

#include <time.h>
#include <math.h>
#include <mpi.h>

int ProcNum; // Number of the available processes
int ProcRank; // Rank of the current process
int *pParallelPivotPos; // Number of rows selected as the pivot ones
int *pProcPivotIter; // Number of iterations, at which the processor
 // rows were used as the pivot ones
int *pProcInd; // Number of the first row located on the processes
int *pProcNum; // Number of the linear system rows located on the processes

// Function for simple definition of matrix and vector elements
void DummyDataInitialization (double* pMatrix, double* pVector, int Size) {
 int i, j; // Loop variables

 for (i=0; i<Size; i++) {
 pVector[i] = i+1;
 for (j=0; j<Size; j++) {
 if (j <= i)
 pMatrix[i*Size+j] = 1;
 else
 pMatrix[i*Size+j] = 0;
 }
 }
}

// Function for random definition of matrix and vector elements
void RandomDataInitialization (double* pMatrix,double* pVector,int Size) {
 int i, j; // Loop variables
 srand(unsigned(clock()));
 for (i=0; i<Size; i++) {
 pVector[i] = rand()/double(1000);
 for (j=0; j<Size; j++) {
 if (j <= i)
 pMatrix[i*Size+j] = rand()/double(1000);
 else
 pMatrix[i*Size+j] = 0;
 }
 }
}

// Function for memory allocation and data initialization
void ProcessInitialization (double* &pMatrix, double* &pVector,
 double* &pResult, double* &pProcRows, double* &pProcVector,
 double* &pProcResult, int &Size, int &RowNum) {

 int RestRows; // Number of rows, that haven't been distributed yet
 int i; // Loop variable

 if (ProcRank == 0) {
 do {
 printf("\nEnter the size of the matrix and the vector: ");
 scanf("%d", &Size);
 if (Size < ProcNum) {
 printf("Size must be greater than number of processes! \n");
 }
 }
 while (Size < ProcNum);
 }
 MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD);

35

 RestRows = Size;
 for (i=0; i<ProcRank; i++)
 RestRows = RestRows-RestRows/(ProcNum-i);
 RowNum = RestRows/(ProcNum-ProcRank);

 pProcRows = new double [RowNum*Size];
 pProcVector = new double [RowNum];
 pProcResult = new double [RowNum];

 pParallelPivotPos = new int [Size];
 pProcPivotIter = new int [RowNum];

 pProcInd = new int [ProcNum];
 pProcNum = new int [ProcNum];

 for (int i=0; i<RowNum; i++)
 pProcPivotIter[i] = -1;

 if (ProcRank == 0) {
 pMatrix = new double [Size*Size];
 pVector = new double [Size];
 pResult = new double [Size];
 DummyDataInitialization (pMatrix, pVector, Size);
 // RandomDataInitialization(pMatrix, pVector, Size);
 }
}

// Function for the data distribution among the processes
void DataDistribution(double* pMatrix, double* pProcRows, double* pVector,
 double* pProcVector, int Size, int RowNum) {

 int *pSendNum; // Number of the elements sent to the process
 int *pSendInd; // Index of the first data element sent to the process
 int RestRows=Size; // Number of rows, that have not been distributed yet
 int i; // Loop variable

 // Alloc memory for temporary objects
 pSendInd = new int [ProcNum];
 pSendNum = new int [ProcNum];

 // Define the disposition of the matrix rows for the current process
 RowNum = (Size/ProcNum);
 pSendNum[0] = RowNum*Size;
 pSendInd[0] = 0;
 for (i=1; i<ProcNum; i++) {
 RestRows -= RowNum;
 RowNum = RestRows/(ProcNum-i);
 pSendNum[i] = RowNum*Size;
 pSendInd[i] = pSendInd[i-1]+pSendNum[i-1];
 }

 // Scatter the rows
 MPI_Scatterv(pMatrix, pSendNum, pSendInd, MPI_DOUBLE, pProcRows,
 pSendNum[ProcRank], MPI_DOUBLE, 0, MPI_COMM_WORLD);

 // Define the disposition of the matrix rows for current process
 RestRows = Size;
 pProcInd[0] = 0;
 pProcNum[0] = Size/ProcNum;
 for (i=1; i<ProcNum; i++) {
 RestRows -= pProcNum[i-1];
 pProcNum[i] = RestRows/(ProcNum-i);
 pProcInd[i] = pProcInd[i-1]+pProcNum[i-1];

36

 }

 MPI_Scatterv(pVector, pProcNum, pProcInd, MPI_DOUBLE, pProcVector,
 pProcNum[ProcRank], MPI_DOUBLE, 0, MPI_COMM_WORLD);

 // Free the memory
 delete [] pSendNum;
 delete [] pSendInd;
}

// Function for gathering the result vector
void ResultCollection(double* pProcResult, double* pResult) {
 // Gather the whole result vector on every processor
 MPI_Gatherv(pProcResult, pProcNum[ProcRank], MPI_DOUBLE, pResult,
 pProcNum, pProcInd, MPI_DOUBLE, 0, MPI_COMM_WORLD);
}

// Function for formatted matrix output
void PrintMatrix (double* pMatrix, int RowCount, int ColCount) {
 int i, j; // Loop variables
 for (i=0; i<RowCount; i++) {
 for (j=0; j<ColCount; j++)
 printf("%7.4f ", pMatrix[i*ColCount+j]);
 printf("\n");
 }
}

// Function for formatted vector output
void PrintVector (double* pVector, int Size) {
 int i;
 for (i=0; i<Size; i++)
 printf("%7.4f ", pVector[i]);
}

// Function for formatted vector output
void PrintResultVector (double* pResult, int Size) {
 int i;
 for (i=0; i<Size; i++)
 printf("%7.4f ", pResult[pParallelPivotPos[i]]);
}

// Fuction for the column elimination
void ParallelEliminateColumns(double* pProcRows, double* pProcVector,
 double* pPivotRow, int Size, int RowNum, int Iter) {
 double multiplier;
 for (int i=0; i<RowNum; i++) {
 if (pProcPivotIter[i] == -1) {
 multiplier = pProcRows[i*Size+Iter] / pPivotRow[Iter];
 for (int j=Iter; j<Size; j++) {
 pProcRows[i*Size + j] -= pPivotRow[j]*multiplier;
 }
 pProcVector[i] -= pPivotRow[Size]*multiplier;
 }
 }
}

// Function for the Gaussian elimination
void ParallelGaussianElimination (double* pProcRows, double* pProcVector,
 int Size, int RowNum) {
 double MaxValue; // Value of the pivot element of thе process
 int PivotPos; // Position of the pivot row in the process stripe

 // Structure for the pivot row selection

37

 struct { double MaxValue; int ProcRank; } ProcPivot, Pivot;

 // pPivotRow is used for storing the pivot row and the corresponding
 // element of the vector b
 pPivotRow = new double [Size+1];

 // The iterations of the Gaussian elimination stage
 for (int i=0; i<Size; i++) {

 // Calculating the local pivot row
 double MaxValue = 0;
 for (int j=0; j<RowNum; j++) {
 if ((pProcPivotIter[j] == -1) &&
 (MaxValue < fabs(pProcRows[j*Size+i]))) {
 MaxValue = fabs(pProcRows[j*Size+i]);
 PivotPos = j;
 }
 }
 ProcPivot.MaxValue = MaxValue;
 ProcPivot.ProcRank = ProcRank;

 // Finding the pivot process
 // (process with the maximum value of MaxValue)
 MPI_Allreduce(&ProcPivot, &Pivot, 1, MPI_DOUBLE_INT, MPI_MAXLOC,
 MPI_COMM_WORLD);

 // Broadcasting the pivot row
 if (ProcRank == Pivot.ProcRank){
 pProcPivotIter[PivotPos]= i; //iteration number
 pParallelPivotPos[i]= pProcInd[ProcRank] + PivotPos;
 }
 MPI_Bcast(&pParallelPivotPos[i], 1, MPI_INT, Pivot.ProcRank,
 MPI_COMM_WORLD);

 if (ProcRank == Pivot.ProcRank){
 // Fill the pivot row
 for (int j=0; j<Size; j++) {
 pPivotRow[j] = pProcRows[PivotPos*Size + j];
 }
 pPivotRow[Size] = pProcVector[PivotPos];
 }
 MPI_Bcast(pPivotRow, Size+1, MPI_DOUBLE, Pivot.ProcRank,
 MPI_COMM_WORLD);
 ParallelEliminateColumns(pProcRows, pProcVector, pPivotRow,
 Size, RowNum, i);
 }
}

// Function for finding the pivot row of the back substitution
void FindBackPivotRow(int RowIndex, int &IterProcRank,
 int &IterPivotPos) {
 for (int i=0; i<ProcNum-1; i++) {
 if ((pProcInd[i]<=RowIndex) && (RowIndex<pProcInd[i+1]))
 IterProcRank = i;
 }
 if (RowIndex >= pProcInd[ProcNum-1])
 IterProcRank = ProcNum-1;
 IterPivotPos = RowIndex - pProcInd[IterProcRank];
}

// Function for the back substitution
void ParallelBackSubstitution (double* pProcRows, double* pProcVector,
 double* pProcResult, int Size, int RowNum) {

38

 int IterProcRank; // Rank of the process with the current pivot row
 int IterPivotPos; // Position of the pivot row of the process
 double IterResult; // Calculated value of the current unknown
 double val;

 // Iterations of the back substitution stage
 for (int i=Size-1; i>=0; i--) {

 // Calculating the rank of the process, which holds the pivot row
 FindBackPivotRow (pParallelPivotPos[i], IterProcRank, IterPivotPos);

 // Calculating the unknown
 if (ProcRank == IterProcRank) {
 IterResult =
 pProcVector[IterPivotPos]/pProcRows[IterPivotPos*Size+i];
 pProcResult[IterPivotPos] = IterResult;
 }
 // Broadcasting the value of the current unknown
 MPI_Bcast(&IterResult, 1, MPI_DOUBLE, IterProcRank, MPI_COMM_WORLD);

 // Updating the values of the vector b
 for (int j=0; j<RowNum; j++)
 if (pProcPivotIter[j] < i) {
 val = pProcRows[j*Size + i] * IterResult;
 pProcVector[j]=pProcVector[j] - val;
 }
 }
}

// Function for testing the data distribution
void TestDistribution(double* pMatrix, double* pVector, double* pProcRows,
 double* pProcVector, int Size, int RowNum) {

 if (ProcRank == 0) {
 printf("Initial Matrix: \n");
 PrintMatrix(pMatrix, Size, Size);
 printf("Initial Vector: \n");
 PrintVector(pVector, Size);
 }
 MPI_Barrier(MPI_COMM_WORLD);
 for (int i=0; i<ProcNum; i++) {
 if (ProcRank == i) {
 printf("\nProcRank = %d \n", ProcRank);
 printf(" Matrix Stripe:\n");
 PrintMatrix(pProcRows, RowNum, Size);
 printf(" Vector: \n");
 PrintVector(pProcVector, RowNum);
 }
 MPI_Barrier(MPI_COMM_WORLD);
 }
}

// Function for the execution of the parallel Gauss algorithm
void ParallelResultCalculation(double* pProcRows, double* pProcVector,
 double* pProcResult, int Size, int RowNum) {
 ParallelGaussianElimination (pProcRows, pProcVector, Size, RowNum);
 ParallelBackSubstitution (pProcRows, pProcVector, pProcResult,
 Size, RowNum);
}

// Function for computational process termination
void ProcessTermination (double* pMatrix, double* pVector, double* pResult,
 double* pProcRows, double* pProcVector, double* pProcResult) {

39

 if (ProcRank == 0) {
 delete [] pMatrix;
 delete [] pVector;
 delete [] pResult;
 }
 delete [] pProcRows;
 delete [] pProcVector;
 delete [] pProcResult;

 delete [] pParallelPivotPos;
 delete [] pProcPivotIter;

 delete [] pProcInd;
 delete [] pProcNum;
}

void TestResult(double* pMatrix, double* pVector, double* pResult,
 int Size) {
 /* Buffer for storing the vector, that is a result of multiplication
 of the linear system matrix by the vector of unknowns */
 double* pRightPartVector;
 // Flag, that shows wheather the right parts vectors are identical or not
 int equal = 0;
 double Accuracy = 1.e-6; // Comparison accuracy

 if (ProcRank == 0) {
 pRightPartVector = new double [Size];
 for (int i=0; i<Size; i++) {
 pRightPartVector[i] = 0;
 for (int j=0; j<Size; j++) {
 pRightPartVector[i] +=
 pMatrix[i*Size+j]*pResult[pParallelPivotPos[j]];
 }
 }

 for (int i=0; i<Size; i++) {
 if (fabs(pRightPartVector[i]-pVector[i]) > Accuracy))
 equal = 1;
 }
 if (equal == 1)
 printf("The result of the parallel Gauss algorithm is NOT correct."
 "Check your code.");
 else
 printf("The result of the parallel Gauss algorithm is correct.");
 delete [] pRightPartVector;
 }
}

void main(int argc, char* argv[]) {
 double* pMatrix; // Matrix of the linear system
 double* pVector; // Right parts of the linear system
 double* pResult; // Result vector
 double *pProcRows; // Rows of the matrix A
 double *pProcVector; // Elements of the vector b
 double *pProcResult; // Elements of the vector x
 int Size; // Sizes of the matrix and the vectors
 int RowNum; // Number of the matrix rows
 double start, finish, duration;

 setvbuf(stdout, 0, _IONBF, 0);

 MPI_Init (&argc, &argv);
 MPI_Comm_rank (MPI_COMM_WORLD, &ProcRank);

40

 MPI_Comm_size (MPI_COMM_WORLD, &ProcNum);

 if (ProcRank == 0)
 printf("Parallel Gauss algorithm for solving linear systems\n");

 // Memory allocation and data initialization
 ProcessInitialization(pMatrix, pVector, pResult,
 pProcRows, pProcVector, pProcResult, Size, RowNum);
 // The execution of the parallel Gauss algorithm
 start = MPI_Wtime();

 DataDistribution(pMatrix, pProcRows, pVector, pProcVector, Size, RowNum);

 ParallelResultCalculation(pProcRows, pProcVector, pProcResult,
 Size, RowNum);
 TestDistribution(pMatrix, pVector, pProcRows, pProcVector, Size, RowNum);

 ResultCollection(pProcResult, pResult);

 finish = MPI_Wtime();
 duration = finish-start;

 if (ProcRank == 0) {
 // Printing the result vector
 printf ("\n Result Vector: \n");
 PrintVector(pResult, Size);
 }
 TestResult(pMatrix, pVector, pResult, Size);

 // Printing the time spent by the Gauss algorithm
 if (ProcRank == 0)
 printf("\n Time of execution: %f\n", duration);

 // Computational process termination
 ProcessTermination(pMatrix, pVector, pResult, pProcRows, pProcVector,
 pProcResult);
 MPI_Finalize();
}

	Learning Lab 3: Parallel Methods of Solving the Linear Equat
	Lab Objective
	Exercise 1 – State the Problem of Solving the Linear Equatio
	Exercise 2 - Studying the Gauss Algorithm for Solving the Li
	Gaussian Elimination
	Back Substitution

	Exercise 3 – The Realization of the Sequential Gauss Algorit
	Task 1 – Open the Project SerialGauss
	Task 2 –Input the Matrix and Vector Sizes
	Task 3 – Input the Initial Data
	Task 4 –Terminate the Program Execution
	Task 5 – Implement the Gaussian Elimination
	Task 6 – Implement the Back Substitution
	Task 7 – Carry out Computational Experiments

	Exercise 4 –Developing the Parallel Gauss Algorithm
	Subtask Definition
	Analysis of Information Dependencies
	Scaling and Subtask Distribution among the Processors

	Exercise 5 – Coding the Parallel Gauss Program for Solving t
	Task 1 – Open the Project ParallelGauss
	Task 2 – Input the Initial Data
	Task 3 – Terminate the Parallel Program
	Task 4 – Distribute the Data among the Processes
	Task 5 – Implement the Gaussian Elimination
	Task 7 – Implement the Back Substitution
	Task 8 – Gather the Result
	Task 9 – Test the Parallel Program Correctness
	Task 10 – Carry out the Computational Experiments

	Discussions
	Exercises
	Appendix 1. The Program Code of the Serial Gauss Algorithm f
	Appendix 2.The Program Code of the Parallel Gauss Algorithm

